
Blackboard exam 5, Mathematics Mathematics 4701, Section TY3
Starts: 4:30 pm, Thurs, May 6; ends: 5:20 pm (late submission loses points).

Instructor: Attila Máté
1. Show that the matrix

A =





2 1 −1
1 2 −1

−1 −1 2



 .

is positive definite.

Solution. Since the matrix A is symmetric, it is sufficient to show that its principal minors are positive.
The 1× 1 principal minor is 2. The 2× 2 principal minor is the determinant
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is also positive. The 3× 3 principal matrix is the determinant
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= 4;

here the first equation is obtained by adding the twice the third row to the first row and adding the third
row to the second row. The second equation is then obtained by expanding the determinant by the first
column. This shows that all principal minors of the symmetric matrix A are positive; hence A is positive
definite, according to the theorem on p. 160 (pdf p. 166) in Section 35 of the notes.

2. Consider the matrix

A =





8 −1 4
2 6 10
14 −6 4



 .

An eigenvalue of this matrix is 2 with eigenvector x = (1, 2,−1)T . Do one step of Wielandt deflation.

Solution. We will use

z =
1

2 · 2
(2, 6, 10)T =

1

2
(1, 3, 5)T ;

here the row vector (2, 6, 10) is the second row of the matrix A. The second row is used since the second
component of the eigenvector x has the largest absolute value. In 1/(2 · 2), the first 2 is the eigenvalue, the
second 2 is the element with the largest absolute value of the eigenvector x.

The purpose of choosing the component of the largest absolute value of the eigenvector is to make the roundoff error the
smallest possible. The reason this results in the smallest roundoff error is that this is likely to make the entries of the subtracted
matrix x · z

T the smallest possible (since we divide by xr, the largest component of x, in calculating z). The larger the

components of the matrix that we are subtracting from A, the more the original values of the entries of A will perturbed by
roundoff errors. This is especially important if one performs repeated deflations, since the roundoff errors then accumulate.
When doing exact calculations with integers, this point may be moot, since in this case there are no roundoff errors.

We have

B = A− 2 · x · z
T =





8 −1 4
2 6 10

14 −6 4



−





1
2

−1



 ( 1 3 5 )

=





8 −1 4
2 6 10
14 −6 4



−





1 3 5
2 6 10

−1 −3 −5



 =





7 −4 −1
0 0 0

15 −3 9



 .

When looking for the eigenvalues of the matrix B (except for the eigenvalue 0, which is not an eigenvalue of
the original matrix A), one can delete the second row and second column of the matrix B, and look for the
eigenvalues of

B′ =

(

7 −1
15 9

)

.
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