
THE ROW SPACE OF A MATRIX
1

The row space R(A) of a matrix A is defined as the vector space spanned by the rows of A. If B is a
matrix with the same number of columns as the number of rows of A, then B and A can be multiplied (in
this order, i.e., the matrix BA is defined). It is easily seen by the rule two matrices are multiplied that the
rows of BA are linear combinations of the rows of A (where the coefficients for the linear combination are
supplied by the row in B having the same index as the row of BA is question). Therefore, each row of BA is
in the space R(A), and so R(BA) ⊂ R(A). If B is an invertible square matrix, then R(A) = R((B−1B)A) ⊂
R(B−1(BA)) ⊂ R(BA) also holds, and so we also have R(BA) = R(A) in this case.

There are a few important consequences of these remarks. First, if C is the row echelon form of A, then
R(C) = R(A); this is because C = PA for an invertible matrix P (namely, P is the product of the elementary
matrices used in obtaining the row echelon form of A). Therefore, writing dim(V ) for the dimension of the
vector space V , dim(R(A)) = dim(R(C)).2 The latter equals the number of nonzero rows in C; this is
because these rows are linearly independent (since each has a leading entry in a column where all the other
rows are zero), so they form a basis for the space they span. This number is also the same as the number of
leading entries of C, because in the row echelon form, each nonzero row has exactly one leading entry.

For an integer k ≥ 0, let A ↾ k be the matrix that is obtained by keeping only those entries of A that are
located in the first k columns.3 The resulting matrix will have k or fewer columns.4 A few observations here
will be useful. First, for any integer k ≥ 0 and any matrix A we have5

R(A ↾ k) = {v ↾ k : v ∈ R(A)};

the right-hand side here will be written as R(A) ↾ k.6 This is because the left-hand side is the set of all
linear combinations of the vectors ai∗ ↾ k, where ai∗ denotes the ith row of A. Therefore, if R(A) = R(B)
for the matrices A and B, then R(A ↾ k) = R(B ↾ k) for any integer k ≥ 0. After these comments we are
ready to prove the following.

Theorem. Let A and B be matrices of the same size such that R(A) = R(B). Then the row echelon forms

of A and B are the same.

An important consequence of this is that the row echelon form of a matrix is unique. Namely, if A = B,
then certainly R(A) = R(B). Even though we talked about the row echelon form of a matrix rather than a

row echelon form, we did this only in anticipation of this result.

Proof. Let C and D be row echelon forms of A and B, respectively; we will show that C = D. Let n be the
number of columns of A (and of B, since they have the same size). We will use induction on n; the result is
clearly true for n = 0.7

1Notes for Course Mathematics 10.1 at Brooklyn College of CUNY. Attila Máté, October 5, 2007.
2Because R(A) and R(C) are the same vector space, according the what was said above.
3The main use of the symbol ↾, called restriction, in mathematics is f ↾ A for a function f and a subset A of its domain.

This denotes a function g such that g(x) = f(x) whenever x ∈ A, and g is undefined if x /∈ A. The function f ↾ A is naturally
called the restriction of f to A. Here we use this symbol with a different meaning.

4Fewer than k if A had fewer than k columns to begin with, and in this case A ↾ k = A; otherwise A will have exactly k
columns. The case k = 0 seems strange, but it will simplify things in the proof below; of course A ↾ 0 will be an empty matrix

(a matrix with no entries).
5The notation v ↾ k used in the next line is to be interpreted by taking the row vector v to be a matrix with one row.
6The notation R(A) ↾ k introduced after the displayed line is a natural extension of notation introduced above. Similarly,

for any set V of row vectors one can write V ↾ k = {v ↾ k : v ∈ V }.
7Because then C and D will both be the empty matrices, and any two empty matrices are equal. Or, more clearly, we will

consider them equal – because there is no way to distinguish them, except perhaps by the number of rows. If one takes the view
that these matrices have m rows and 0 columns, then one would consider two empty matrices different if they have different
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Now, let n ≥ 1, and assume that the result is true for any two matrices with n−1 columns. It is clear that
a row echelon form of A ↾ (n − 1) is C ↾ (n − 1); this is because using the same elementary row operations
for A ↾ (n − 1) that were used in obtaining C from A will result in the matrix C ↾ (n − 1), and, clearly,
C ↾ (n − 1) is in row echelon form.8 Similarly, a row echelon form of B ↾ (n − 1) is D ↾ (n − 1). We have
R(A ↾ (n− 1)) = R(A) ↾ (n− 1) = R(B) ↾ (n− 1) = R(B ↾ (n− 1)), by the observations above. Therefore,
by the induction hypothesis, we have C ↾ (n− 1) = D ↾ (n− 1).

Our first goal is to show that the leading entries of C and D are in the same columns. Since the first
n− 1 columns of C and D are the same, the only question is whether the last column of C or D contains a
leading entry. Now, if dim(R(A)) = dim((A ↾ (n − 1)), then C has the same number of leading entries as
C ↾ (n− 1), so the last column of C cannot contain a leading entry, and if dim(R(A)) > dim((A ↾ (n− 1)),
then C has more leading entries than C ↾ (n−1), and so the last column of C must contain a leading entry.9

As R(B) = R(A) and R(B) ↾ (n − 1) = R(A) ↾ (n − 1), the same considerations with the matrix B show
that the last columns of C and D either both have leading entries or neither of them do. Thus, C and D

indeed have leading entries in the same columns.
It will be easy to establish from this that C = D. To this end, note that the leading entries of C and

D are in the same places in C and D (that is, they are also in the same rows).10 Let r be the number of
nonzero rows of C, and let l(i) be the column index of the leading entry in row i of C (1 ≤ i ≤ r). Since
R(C) = R(A) = R(B) = R(D), every nonzero row of D is a linear combination of the nonzero rows of C.
That is, writing C = (cij) and D = (dij), and recalling that di∗ then denotes ith row of D and cj∗, the jth
row of C, for each j with 1 ≤ j ≤ r we have

(1) di∗ =

r
∑

j=1

αjcj∗;

of course, the scalars αj depend on i as well here, but i will remain fixed in the forthcoming argument, so
this dependence is not indicated. This equation stated for the entries in the l(k)th column for a k with
1 ≤ k ≤ r says that

(2) di l(k) =
r

∑

j=1

αjcj l(k).

Using the notation

δij =

{

1 if i = j,

0 if i 6= j,

called Kronecker δ after the 19th century German mathematician Leopold Kronecker, the proof can now be
completed quickly. Noting that di l(k) = δik and cj l(k) = δjk,

11 equation (2) can be written as

δik =
r

∑

j=1

αjδjk = αk

numbers of rows. Since we are dealing with two matrices of the same size, C and D will have the same number of rows, so we
will still have C = D. It is not really worth discussing the question what the row space of the empty matrix is – but if one

insists, one can take this to be the space consisting of the single row vector of length zero, this being the zero element of the
space.

On the face of it, one may consider it silly to start the induction with n = 0, but this is the elegant way to do it. If one

wants to start with n = 1, then one needs to include a proof for n = 1. This is simple enough to do, but it is unnecessary. After
a careful reading of the proof here, it is clear that the induction step works also for the case stepping from n = 0 to n = 1, and
it does not even matter what one thinks of matrices with zero columns. A further remark on this issue will be made right after
the proof.

8Another way of putting this argument is as follows: if P is a product of elementary matrices such that C = PA then
C ↾ (n− 1) = P (A ↾ (n− 1)); C = PA implies the latter equation for any matrices C, P , and A because of the way operations
can be done with block matrices; that is, consider A as the block matrix (A ↾ (n− 1) a∗n), where a∗n is the last column of A.

9Because, as we pointed this out above, the number of leading entries in a row echelon form of a matrix is the same as
the dimension of its row space. These considerations also imply that the only values that are possible for dim(R(A)) are
dim(R(A ↾ (n − 1))) and dim(R(A ↾ (n − 1))) + 1, since either C has the same number of leading entries as C ↾ (n − 1) or it
has one more.

10This is because each nonzero row has exactly one leading entry, and the column indices of the leading entries are an
increasing function of the row indices of the nonzero rows.

11These equations express the fact that in a column containing a leading entry, the leading entry itself is 1, and every other

entry is 0.
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for the given i and for any k with and 1 ≤ k ≤ r; stating this with j instead of k, we have αj = δij for any
j with 1 ≤ j ≤ r. Substituting this into equation (1), we obtain

di∗ =

r
∑

j=1

δijcj∗ = ci∗.

That is, the ith row of C is the same as the ith row of D. This being true for any i with 1 ≤ i ≤ r, each
nonzero row of D agrees with the corresponding row of C. Hence D = C, as we wanted to show.

Remark. If one wants to avoid the case n = 0, one needs to establish the result for n = 1 separately. This
is easy to do by observing that, in case n = 1, i.e., when A and B have only one column each, there are two
cases: 1) all entries of A and B are zero, in which case C and D equal the zero matrix; 2) A and B each
have nonzero entries, in which case C = D is a column vector whose first entry is 1 and all other entries
are 0. It is worth noting that this is essentially the same argument as the one used in the induction step to
decide whether or not the nth columns of C and D have leading entries. That is, starting the induction at
n = 1 instead of n = 0 unnecessarily repeats a part of the argument used in the induction step.
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