
Exam 1, Mathematics 4701, Section TY2 21 copies
1:25 pm–3:25 pm, Feb 28, 2019, IH-137

Instructor: Attila Máté1

1.a) Calculate x −
√
x2 − 2 for x = 1, 000, 000 with 6 significant digit accuracy. Avoid the loss of

significant digits.

Solution. We cannot use the expression given directly, since x and
√
x2 − 1 are too close, and their

subtraction will result in a loss of precision. To avoid this, note that

x−
√

x2 − 2 =
(

x−
√

x2 − 2
)

· x+
√
x2 − 2

x+
√
x2 − 2

=
2

x+
√
x2 − 2

.

To do the numerical calculation, it is easiest to first write that x = y · 106, where y = 1. Then

(1)
2

x+
√
x2 − 2

=
2

y +
√

y2 − 2 · 10−12
· 10−6 =

2

1 +
√
1− 2 · 10−12

· 10−6.

The idea would be to do the rest of the calculation on computer. On paper, one might go a little further.
First, note the Taylor expansion

√
1 + t = 1 +

t

2
− t2

8
+

t3

16
− . . . .

Using this with t = −2 · 10−12, we obtain that2

√

1− 2 · 10−12 ≈ 1− 10−12 − 10−24/2.

Thus, the right-hand side of (1) approximately equals

(2)
2

1 + (1− 10−12 − 10−24/2)
· 10−6 ≈ 2

2− 10−12
· 10−6. =

1

1− 10−12/2
· 10−6.

To estimate the right-hand side here, use the Taylor expansion

1

1− t
= 1 + t+ t2 + . . . .

This with t = 10−12 shows that the right-hand side of (2) approximately equals

(1 + 10−12/2 + 10−24/4) · 10−6 ≈ 1.000, 000, 000 · 10−6.

Note. Instead of rationalizing the denominator, as we did above, one can base the whole calculation on
a Taylor series approximation. Using the Taylor series expansion of

√
1 + t given above, we have (writing

x = 106, as before), that

x−
√

x2 − 2 = 106 −
√

1012 − 2 = 106 · (1−
√

1− 2 · 10−12)

= 106 · (1− (1− 10−12 − 10−24

2
− 10−36

2
− . . . ) ≈ 1.000, 000, 000 · 10−6.

Usually, the approach involving rationalizing the denominator preferred since it is more general; for example,
if one wants to calculate x −

√
x2 − 1 for x = 100, the rationalizing approach would still work without any

1All computer processing for this manuscript was done under Fedora Linux. AMS-TEX was used for typesetting.
2If one wants to show rigorously that the third term in the next line correctly represents the approximate error in the

calculation, one may replace −t2/8 in the preceding line with the Lagrange remainder term for the Taylor series. Writing f(t) =√
1 + t, the term −t2/8 represents f ′′(0)t2/2!, while the Lagrange remainder term would be f ′′(ξ)t2/2! = −(1 + ξ)−3/2t2/8

for some ξ between t = −2 · 10−12 and 0 – clearly, the difference between these terms is negligible. Much the same comment
applies to our estimate of 1/(1− t) below.
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change, while in the Taylor series approach one would need to calculate more terms to get a satisfactory
precision.

b) Find 1− cos 0.009 with 10 decimal digit accuracy.

Solution. Calculating 1−cos 0.009 directly would lead to an unnecessary and unacceptable loss of accuracy.
It is much better to use the Taylor series of cosx with x = 9 · 10−3:

cosx =

∞
∑

n=0

(−1)n · x2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
. . . .

For |x| ≤ 1 this is an alternating series, and so, when summing finitely many terms of the series, the error
will be less than the first omitted term. With x = 9 · 10−3, we have

x6

6!
< x6 < 0.016 = 10−12,

so this term can be safely omitted. Thus, with x as above, we have

1− cos 0.009 = 1− cosx ≈ x2

2
− x4

24
≈ .000, 040, 500, 000− .000, 000, 000, 273 = .000, 040, 499, 727.

2.a) Evaluate
√

x+ y2

for x = 5± 0.04 and y = 2± 0.08.

Solution. There is no problem with the actual calculation. With x = 5 and y = 2 we have

√

x+ y2 =
√
9 = 3.

The real question is, how accurate this result is? Writing

f(x, y) =
√

x+ y2,

we estimate the error of f by its total differential

df(x, y) =
∂f(x, y)

∂x
dx+

∂f(x, y)

∂y
dy =

1

2
√

x+ y2
dx+

y
√

x+ y2
dy,

where x = 5, y = 2, and dx = ±0.04 and dy = ±0.08, that is, |dx| ≤ 0.04 and |dy| ≤ 0.08.3 Thus

|df(x, y)| ≤
∣

∣

∣

∣

∣

1

2
√

x+ y2

∣

∣

∣

∣

∣

|dx|+
∣

∣

∣

∣

∣

y
√

x+ y2

∣

∣

∣

∣

∣

|dy|

/
1

2 · 3 · 0.04 + 2

3
· 0.08 =

0.02 + 0.16

3
= 0.06.

Thus f(x.y) ≈ 3± 0.06.

b) The leading term of the Newton interpolation polynomial P to a function f with the nodes x0, x1,
. . . xn is

f [x0, x1, · · · , xn]x
n.

3It is more natural to write ∆x and ∆y for the errors of x and y, but in the total differential below one customarily uses
dx, and dy.
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Using this, show that

f [x0, x1, · · · , xn] =
f (n)(ξ)

n!

for some ξ in the interval spanned by x0, x1, . . . xn. (All the nodes x0, x1, . . . xn are assumed to be
distinct.)

Solution. Taking the nth derivative of the polynomial P , only the derivative of the leading term survives.
That is,

P (n)(x) = n!f [x0, x1, · · · , xn].

On the other hand, f(x)−P (x) has at least n+1 zeros, x0, x1, . . . xn. Hence f
(n)(x)−P (n)(x) has at least

one zero in the interval spanned by x0, x1, . . . xn. Writing ξ for such a zero, we have

0 = f (n)(ξ)− P (n)(ξ) = f (n)(ξ)− n!f [x0, x1, · · · , xn].

Omitting the middle member of these equations and solving the remaining equality, we obtain

f [x0, x1, · · · , xn] =
f (n)(ξ)

n!
.

as we wanted to show.

3.a) Find the Lagrange interpolation polynomial P (x) such that P (1) = −3, P (3) = −1, P (4) = 3.

Solution. Write x1 = 1, x2 = 3, x3 = 4. We have

l1(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
=

(x− 3)(x− 4)

(1− 3)(1− 4)
=

1

6
(x− 3)(x− 4),

l2(x) =
(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
=

(x− 1)(x− 4)

(3− 1)(3− 4)
= −1

2
(x− 1)(x− 4),

l3(x) =
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
=

(x− 1)(x− 3)

(4− 1)(4− 3)
=

1

3
(x− 1)(x− 3).

Thus, we have

P (x) = P (1)l1(x) + P (3)l2(x) + P (4)l3(x) = −3 · 1
6
(x− 3)(x− 4) + (−1) ·

(

−1

2

)

(x− 1)(x− 4)

+ 3 · 1
3
(x− 1)(x− 3) = −1

2
(x− 3)(x− 4) +

1

2
(x− 1)(x− 4) + (x− 1)(x− 3) = x2 − 3x− 1.

b) Estimate the error of Lagrange interpolation when interpolating f(x) = 1/x at x = 2 when using
the interpolation points x1 = 1, x2 = 4, and x3 = 5.

Solution. Noting that the third derivative of 1/x equals −6/x4, with f(x) = 1/x and with some ξ between
1 and 5, for the error at x = 2 we have

E(x) = f ′′′(ξ)
(x− 1)(x− 4)(x− 5)

3!
= − 6

ξ4
(2− 1)(2− 4)(2− 5)

6
= − 6

ξ4

according to the error formula of the Lagrange interpolation, where ξ is some number in the interval spanned
by x, x1, x2, and x3, i.e., in the interval (1, 5). Clearly, the right-hand side is smallest for ξ = 1 and largest
for x = 5. Thus we have

−6 < E(5) < − 6

625
.

We have strict inequalities, since the values ξ = 1 and ξ = 5 are not allowed.
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4. Find the Newton-Hermite interpolation polynomial for f(x) with f(2) = 4, f ′(2) = 15, f(4) = 10,
f ′(4) = 39, f ′′(4) = 28.

a) First, write the divided difference table, using the points 2, 4 in natural order.

Solution. We have f [x] = f(x); hence f [2] = 4 and f [4] = 10. Further, f [x, x] = f ′(x); hence f [2, 2] = 15
and f [4, 4] = 39. Finally, f [x, x, x] = (1/2)f ′′(x); so f [4, 4, 4] = 14. Next

f [2, 4] =
f [4]− f [2]

4− 2
=

10− 4

2
= 3,

f [2, 2, 4] =
f [2, 4]− f [2, 2]

4− 2
=

3− 15

2
= −6,

and

f [2, 4, 4] =
f [4, 4]− f [2, 4]

4− 2
=

39− 3

2
= 18.

Therefore,

f [2, 2, 4, 4] =
f [2, 4, 4]− f [2, 2, 4]

4− 2
=

18 + 6

2
= 12,

f [2, 4, 4, 4] =
f [4, 4, 4]− f [2, 4, 4]

4− 2
=

14− 18

2
= −2,

and

f [2, 2, 4, 4, 4] =
f [2, 4, 4, 4]− f [2, 2, 4, 4]

4− 2
=

−2− 12

2
= −7.

We can summarize these values in a divided difference table:

x f [.] f [., .] f [., ., .] f [x., ., ., .] f [x., ., ., ., .]

2 4
15

2 4 −6
3 12

4 10 18 −7
39 −2

4 10 14
39

4 10

b) Using the divided difference table, write the Newton-Hermite interpolation polynomial using the
order of points 2, 2, 4, 4, 4.

Solution. We have

P (x) = f [2] + f [2, 2](x− 2) + f [2, 2, 4](x− 2)(x− 2) + f [2, 2, 4, 4](x− 2)(x− 2)(x− 4)

+ f [2, 2, 4, 4, 4](x− 2)(x− 2)(x− 4)(x− 4)

= 4 + 15(x− 2)− 6(x− 2)2 + 12(x− 2)2(x− 4)− 7(x− 2)2(x− 4)2.

c) Using the divided difference table, write the Newton-Hermite interpolation polynomial using the
order of points 4, 2, 4, 2, 4.

Solution. We have

P (x) = f [4] + f [4, 2](x− 4) + f [4, 2, 4](x− 4)(x− 2) + f [4, 2, 4, 2](x− 4)(x− 2)(x− 4)

+ f [4, 2, 4, 2, 4](x− 4)(x− 2)(x− 4)(x− 2)

= 10 + 3(x− 4) + 18(x− 2)(x− 4) + 12(x− 2)(x− 4)2 − 7(x− 2)2(x− 4)2.
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5.a) Consider the equation f(x) = 0 with f(x) = 2− x+ lnx. Using Newton’s method with x0 = 3 as
a starting point, find the next approximation to the solution of the equation.

Solution. We have

x1 = x0 −
f(x0)

f ′(x0)
= x0 −

2− x0 + lnx0
1
x0

− 1
= 3− −1 + ln 3

−2/3
=

3 + 3 ln 3

2
≈ 3.14792.

The actual solution is approximately 3.14619.

b) Evaluate the derivative of P (x) = x3 − 4x2 + 6x + 4 at x = 2 using Horner’s method. Show the
details of your calculation.

Solution. We have a0 = 1, a1 = −4, a2 = 6, a3 = 4, and x0 = 2. Further, we have b0 = a0 and
bk = ak + bk−1x0 for k with 0 < k ≤ 3. Therefore,

b0 = a0 = 1,

b1 = a1 + b0x0 = −4 + 1 · 2 = −2,

b2 = a2 + b1x0 = 6 + (−2) · 2 = 2,

b3 = a3 + b2x0 = 4 + 2 · 2 = 8.

Actually, we did not need to calculate b3, since it is not used in calculating the derivative. The derivative as
x = 2 is the value for x = 2 of the polynomial b0x

2 + b1x + b2. Using Horner’s rule, this can be calculated
by first calculating the coefficients c0 = b0 and ck = bk + ck−1 for k with 0 < k ≤ 2, and then value of the
polynomial being considered will be c2. That is,

c0 = b0 = 1,

c1 = b1 + c0x0 = −2 + 1 · 2 = 0,

c2 = b2 + c1x0 = 2 + 0 · 2 = 2.

That is, P ′(2) = c2 = 2. It is easy to check that this result is correct. There is no real saving when the
calculation is done for a polynomial of such low degree. For higher degree polynomials, there is definitely
a saving in calculation. Another advantage of the method, especially for computers, is that the formal
differentiation of polynomials can be avoided.

c) Let P and Q be polynomials, let x0 and r be a numbers, and assume that

P (x) = (x− x0)Q(x) + r.

Show that P ′(x0) = Q(x0).

Solution. We have
P ′(x) = Q(x) + (x− x0)Q

′(x)

simply be using the product rule for differentiation. Substituting x = x0, we obtain that P ′(x0) = Q(x0).

Note: The coefficients of the polynomial Q(x) can be produced by Horner’s method. By another use
of Horner’s method, we can evaluate Q(x0). This provides an efficient way to evaluate P ′(x) on computers
without using symbolic differentiation.
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