1.a) Calculate $x-\sqrt{x^{2}-2}$ for $x=1,000,000$ with 6 significant digit accuracy. Avoid the loss of significant digits.
Solution. We cannot use the expression given directly, since x and $\sqrt{x^{2}-1}$ are too close, and their subtraction will result in a loss of precision. To avoid this, note that

$$
x-\sqrt{x^{2}-2}=\left(x-\sqrt{x^{2}-2}\right) \cdot \frac{x+\sqrt{x^{2}-2}}{x+\sqrt{x^{2}-2}}=\frac{2}{x+\sqrt{x^{2}-2}}
$$

To do the numerical calculation, it is easiest to first write that $x=y \cdot 10^{6}$, where $y=1$. Then

$$
\begin{equation*}
\frac{2}{x+\sqrt{x^{2}-2}}=\frac{2}{y+\sqrt{y^{2}-2 \cdot 10^{-12}}} \cdot 10^{-6}=\frac{2}{1+\sqrt{1-2 \cdot 10^{-12}}} \cdot 10^{-6} . \tag{1}
\end{equation*}
$$

The idea would be to do the rest of the calculation on computer. On paper, one might go a little further. First, note the Taylor expansion

$$
\sqrt{1+t}=1+\frac{t}{2}-\frac{t^{2}}{8}+\frac{t^{3}}{16}-\ldots
$$

Using this with $t=-2 \cdot 10^{-12}$, we obtain that ${ }^{2}$

$$
\sqrt{1-2 \cdot 10^{-12}} \approx 1-10^{-12}-10^{-24} / 2
$$

Thus, the right-hand side of (1) approximately equals

$$
\begin{equation*}
\frac{2}{1+\left(1-10^{-12}-10^{-24} / 2\right)} \cdot 10^{-6} \approx \frac{2}{2-10^{-12}} \cdot 10^{-6} .=\frac{1}{1-10^{-12} / 2} \cdot 10^{-6} \tag{2}
\end{equation*}
$$

To estimate the right-hand side here, use the Taylor expansion

$$
\frac{1}{1-t}=1+t+t^{2}+\ldots
$$

This with $t=10^{-12}$ shows that the right-hand side of (2) approximately equals

$$
\left(1+10^{-12} / 2+10^{-24} / 4\right) \cdot 10^{-6} \approx 1.000,000,000 \cdot 10^{-6}
$$

Note. Instead of rationalizing the denominator, as we did above, one can base the whole calculation on a Taylor series approximation. Using the Taylor series expansion of $\sqrt{1+t}$ given above, we have (writing $x=10^{6}$, as before), that

$$
\begin{aligned}
x- & \sqrt{x^{2}-2}=10^{6}-\sqrt{10^{12}-2}=10^{6} \cdot\left(1-\sqrt{1-2 \cdot 10^{-12}}\right) \\
& =10^{6} \cdot\left(1-\left(1-10^{-12}-\frac{10^{-24}}{2}-\frac{10^{-36}}{2}-\ldots\right) \approx 1.000,000,000 \cdot 10^{-6}\right.
\end{aligned}
$$

Usually, the approach involving rationalizing the denominator preferred since it is more general; for example, if one wants to calculate $x-\sqrt{x^{2}-1}$ for $x=100$, the rationalizing approach would still work without any

[^0]change, while in the Taylor series approach one would need to calculate more terms to get a satisfactory precision.
b) Find $1-\cos 0.009$ with 10 decimal digit accuracy.

Solution. Calculating $1-\cos 0.009$ directly would lead to an unnecessary and unacceptable loss of accuracy. It is much better to use the Taylor series of $\cos x$ with $x=9 \cdot 10^{-3}$:

$$
\cos x=\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!} \ldots
$$

For $|x| \leq 1$ this is an alternating series, and so, when summing finitely many terms of the series, the error will be less than the first omitted term. With $x=9 \cdot 10^{-3}$, we have

$$
\frac{x^{6}}{6!}<x^{6}<0.01^{6}=10^{-12}
$$

so this term can be safely omitted. Thus, with x as above, we have

$$
1-\cos 0.009=1-\cos x \approx \frac{x^{2}}{2}-\frac{x^{4}}{24} \approx .000,040,500,000-.000,000,000,273=.000,040,499,727
$$

2.a) Evaluate

$$
\sqrt{x+y^{2}}
$$

for $x=5 \pm 0.04$ and $y=2 \pm 0.08$.
Solution. There is no problem with the actual calculation. With $x=5$ and $y=2$ we have

$$
\sqrt{x+y^{2}}=\sqrt{9}=3
$$

The real question is, how accurate this result is? Writing

$$
f(x, y)=\sqrt{x+y^{2}}
$$

we estimate the error of f by its total differential

$$
d f(x, y)=\frac{\partial f(x, y)}{\partial x} d x+\frac{\partial f(x, y)}{\partial y} d y=\frac{1}{2 \sqrt{x+y^{2}}} d x+\frac{y}{\sqrt{x+y^{2}}} d y
$$

where $x=5, y=2$, and $d x= \pm 0.04$ and $d y= \pm 0.08$, that is, $|d x| \leq 0.04$ and $|d y| \leq 0.08 .{ }^{3}$ Thus

$$
\begin{aligned}
& |d f(x, y)| \leq\left|\frac{1}{2 \sqrt{x+y^{2}}}\right||d x|+\left|\frac{y}{\sqrt{x+y^{2}}}\right||d y| \\
& \quad \lesssim \frac{1}{2 \cdot 3} \cdot 0.04+\frac{2}{3} \cdot 0.08=\frac{0.02+0.16}{3}=0.06
\end{aligned}
$$

Thus $f(x . y) \approx 3 \pm 0.06$.
$b)$ The leading term of the Newton interpolation polynomial P to a function f with the nodes x_{0}, x_{1}, $\ldots x_{n}$ is

$$
f\left[x_{0}, x_{1}, \cdots, x_{n}\right] x^{n}
$$

[^1]Using this, show that

$$
f\left[x_{0}, x_{1}, \cdots, x_{n}\right]=\frac{f^{(n)}(\xi)}{n!}
$$

for some ξ in the interval spanned by $x_{0}, x_{1}, \ldots x_{n}$. (All the nodes $x_{0}, x_{1}, \ldots x_{n}$ are assumed to be distinct.)

Solution. Taking the nth derivative of the polynomial P, only the derivative of the leading term survives. That is,

$$
P^{(n)}(x)=n!f\left[x_{0}, x_{1}, \cdots, x_{n}\right]
$$

On the other hand, $f(x)-P(x)$ has at least $n+1$ zeros, $x_{0}, x_{1}, \ldots x_{n}$. Hence $f^{(n)}(x)-P^{(n)}(x)$ has at least one zero in the interval spanned by $x_{0}, x_{1}, \ldots x_{n}$. Writing ξ for such a zero, we have

$$
0=f^{(n)}(\xi)-P^{(n)}(\xi)=f^{(n)}(\xi)-n!f\left[x_{0}, x_{1}, \cdots, x_{n}\right]
$$

Omitting the middle member of these equations and solving the remaining equality, we obtain

$$
f\left[x_{0}, x_{1}, \cdots, x_{n}\right]=\frac{f^{(n)}(\xi)}{n!}
$$

as we wanted to show.
3.a) Find the Lagrange interpolation polynomial $P(x)$ such that $P(1)=-3, P(3)=-1, P(4)=3$.

Solution. Write $x_{1}=1, x_{2}=3, x_{3}=4$. We have

$$
\begin{aligned}
& l_{1}(x)=\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}=\frac{(x-3)(x-4)}{(1-3)(1-4)}=\frac{1}{6}(x-3)(x-4) \\
& l_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}=\frac{(x-1)(x-4)}{(3-1)(3-4)}=-\frac{1}{2}(x-1)(x-4) \\
& l_{3}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}=\frac{(x-1)(x-3)}{(4-1)(4-3)}=\frac{1}{3}(x-1)(x-3)
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
P(x) & =P(1) l_{1}(x)+P(3) l_{2}(x)+P(4) l_{3}(x)=-3 \cdot \frac{1}{6}(x-3)(x-4)+(-1) \cdot\left(-\frac{1}{2}\right)(x-1)(x-4) \\
& +3 \cdot \frac{1}{3}(x-1)(x-3)=-\frac{1}{2}(x-3)(x-4)+\frac{1}{2}(x-1)(x-4)+(x-1)(x-3)=x^{2}-3 x-1
\end{aligned}
$$

b) Estimate the error of Lagrange interpolation when interpolating $f(x)=1 / x$ at $x=2$ when using the interpolation points $x_{1}=1, x_{2}=4$, and $x_{3}=5$.
Solution. Noting that the third derivative of $1 / x$ equals $-6 / x^{4}$, with $f(x)=1 / x$ and with some ξ between 1 and 5 , for the error at $x=2$ we have

$$
E(x)=f^{\prime \prime \prime}(\xi) \frac{(x-1)(x-4)(x-5)}{3!}=-\frac{6}{\xi^{4}} \frac{(2-1)(2-4)(2-5)}{6}=-\frac{6}{\xi^{4}}
$$

according to the error formula of the Lagrange interpolation, where ξ is some number in the interval spanned by x, x_{1}, x_{2}, and x_{3}, i.e., in the interval $(1,5)$. Clearly, the right-hand side is smallest for $\xi=1$ and largest for $x=5$. Thus we have

$$
-6<E(5)<-\frac{6}{625} .
$$

We have strict inequalities, since the values $\xi=1$ and $\xi=5$ are not allowed.
4. Find the Newton-Hermite interpolation polynomial for $f(x)$ with $f(2)=4, f^{\prime}(2)=15, f(4)=10$, $f^{\prime}(4)=39, f^{\prime \prime}(4)=28$.
a) First, write the divided difference table, using the points 2,4 in natural order.

Solution. We have $f[x]=f(x)$; hence $f[2]=4$ and $f[4]=10$. Further, $f[x, x]=f^{\prime}(x)$; hence $f[2,2]=15$ and $f[4,4]=39$. Finally, $f[x, x, x]=(1 / 2) f^{\prime \prime}(x)$; so $f[4,4,4]=14$. Next

$$
\begin{gathered}
f[2,4]=\frac{f[4]-f[2]}{4-2}=\frac{10-4}{2}=3, \\
f[2,2,4]=\frac{f[2,4]-f[2,2]}{4-2}=\frac{3-15}{2}=-6,
\end{gathered}
$$

and

$$
f[2,4,4]=\frac{f[4,4]-f[2,4]}{4-2}=\frac{39-3}{2}=18
$$

Therefore,

$$
\begin{gathered}
f[2,2,4,4]=\frac{f[2,4,4]-f[2,2,4]}{4-2}=\frac{18+6}{2}=12 \\
f[2,4,4,4]=\frac{f[4,4,4]-f[2,4,4]}{4-2}=\frac{14-18}{2}=-2
\end{gathered}
$$

and

$$
f[2,2,4,4,4]=\frac{f[2,4,4,4]-f[2,2,4,4]}{4-2}=\frac{-2-12}{2}=-7 .
$$

We can summarize these values in a divided difference table:

x	$f[]$.	$f[.,]$.	$f[., .,]$.	$f[x ., ., .,]$.	$f[x ., ., ., .,]$.
2	4				
2	4	15	-6		
4	10	3	18	12	-7
4	10	39	14	-2	
4	10	39			

b) Using the divided difference table, write the Newton-Hermite interpolation polynomial using the order of points $2,2,4,4,4$.

Solution. We have

$$
\begin{aligned}
P(x) & =f[2]+f[2,2](x-2)+f[2,2,4](x-2)(x-2)+f[2,2,4,4](x-2)(x-2)(x-4) \\
& +f[2,2,4,4,4](x-2)(x-2)(x-4)(x-4) \\
& =4+15(x-2)-6(x-2)^{2}+12(x-2)^{2}(x-4)-7(x-2)^{2}(x-4)^{2} .
\end{aligned}
$$

c) Using the divided difference table, write the Newton-Hermite interpolation polynomial using the order of points $4,2,4,2,4$.

Solution. We have

$$
\begin{aligned}
P(x) & =f[4]+f[4,2](x-4)+f[4,2,4](x-4)(x-2)+f[4,2,4,2](x-4)(x-2)(x-4) \\
& +f[4,2,4,2,4](x-4)(x-2)(x-4)(x-2) \\
& =10+3(x-4)+18(x-2)(x-4)+12(x-2)(x-4)^{2}-7(x-2)^{2}(x-4)^{2} .
\end{aligned}
$$

5.a) Consider the equation $f(x)=0$ with $f(x)=2-x+\ln x$. Using Newton's method with $x_{0}=3$ as a starting point, find the next approximation to the solution of the equation.
Solution. We have

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=x_{0}-\frac{2-x_{0}+\ln x_{0}}{\frac{1}{x_{0}}-1}=3-\frac{-1+\ln 3}{-2 / 3}=\frac{3+3 \ln 3}{2} \approx 3.14792
$$

The actual solution is approximately 3.14619 .
b) Evaluate the derivative of $P(x)=x^{3}-4 x^{2}+6 x+4$ at $x=2$ using Horner's method. Show the details of your calculation.

Solution. We have $a_{0}=1, a_{1}=-4, a_{2}=6, a_{3}=4$, and $x_{0}=2$. Further, we have $b_{0}=a_{0}$ and $b_{k}=a_{k}+b_{k-1} x_{0}$ for k with $0<k \leq 3$. Therefore,

$$
\begin{gathered}
b_{0}=a_{0}=1, \\
b_{1}=a_{1}+b_{0} x_{0}=-4+1 \cdot 2=-2, \\
b_{2}=a_{2}+b_{1} x_{0}=6+(-2) \cdot 2=2, \\
b_{3}=a_{3}+b_{2} x_{0}=4+2 \cdot 2=8 .
\end{gathered}
$$

Actually, we did not need to calculate b_{3}, since it is not used in calculating the derivative. The derivative as $x=2$ is the value for $x=2$ of the polynomial $b_{0} x^{2}+b_{1} x+b_{2}$. Using Horner's rule, this can be calculated by first calculating the coefficients $c_{0}=b_{0}$ and $c_{k}=b_{k}+c_{k-1}$ for k with $0<k \leq 2$, and then value of the polynomial being considered will be c_{2}. That is,

$$
\begin{gathered}
c_{0}=b_{0}=1, \\
c_{1}=b_{1}+c_{0} x_{0}=-2+1 \cdot 2=0 \\
c_{2}=b_{2}+c_{1} x_{0}=2+0 \cdot 2=2 .
\end{gathered}
$$

That is, $P^{\prime}(2)=c_{2}=2$. It is easy to check that this result is correct. There is no real saving when the calculation is done for a polynomial of such low degree. For higher degree polynomials, there is definitely a saving in calculation. Another advantage of the method, especially for computers, is that the formal differentiation of polynomials can be avoided.
c) Let P and Q be polynomials, let x_{0} and r be a numbers, and assume that

$$
P(x)=\left(x-x_{0}\right) Q(x)+r .
$$

Show that $P^{\prime}\left(x_{0}\right)=Q\left(x_{0}\right)$.
Solution. We have

$$
P^{\prime}(x)=Q(x)+\left(x-x_{0}\right) Q^{\prime}(x)
$$

simply be using the product rule for differentiation. Substituting $x=x_{0}$, we obtain that $P^{\prime}\left(x_{0}\right)=Q\left(x_{0}\right)$.
Note: The coefficients of the polynomial $Q(x)$ can be produced by Horner's method. By another use of Horner's method, we can evaluate $Q\left(x_{0}\right)$. This provides an efficient way to evaluate $P^{\prime}(x)$ on computers without using symbolic differentiation.

[^0]: ${ }^{1}$ All computer processing for this manuscript was done under Fedora Linux. $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$ was used for typesetting.
 ${ }^{2}$ If one wants to show rigorously that the third term in the next line correctly represents the approximate error in the calculation, one may replace $-t^{2} / 8$ in the preceding line with the Lagrange remainder term for the Taylor series. Writing $f(t)=$ $\sqrt{1+t}$, the term $-t^{2} / 8$ represents $f^{\prime \prime}(0) t^{2} / 2$!, while the Lagrange remainder term would be $f^{\prime \prime}(\xi) t^{2} / 2!=-(1+\xi)^{-3 / 2} t^{2} / 8$ for some ξ between $t=-2 \cdot 10^{-12}$ and 0 - clearly, the difference between these terms is negligible. Much the same comment applies to our estimate of $1 /(1-t)$ below.

[^1]: ${ }^{3}$ It is more natural to write Δx and Δy for the errors of x and y, but in the total differential below one customarily uses $d x$, and $d y$.

