1. a) Calculate \(x - \sqrt{x^2 - 2} \) for \(x = 1,000,000 \) with 6 significant digit accuracy. Avoid the loss of significant digits.

Solution. We cannot use the expression given directly, since \(x \) and \(\sqrt{x^2 - 1} \) are too close, and their subtraction will result in a loss of precision. To avoid this, note that

\[
x - \sqrt{x^2 - 2} = \left(x - \sqrt{x^2 - 2} \right) \cdot \frac{x + \sqrt{x^2 - 2}}{x + \sqrt{x^2 - 2}} = \frac{2}{x + \sqrt{x^2 - 2}}.
\]

To do the numerical calculation, it is easiest to first write that \(x = y \cdot 10^6 \), where \(y = 1 \). Then

\[
\frac{2}{x + \sqrt{x^2 - 2}} = \frac{2}{y + \sqrt{y^2 - 2} \cdot 10^{-12}} \cdot 10^{-6} = \frac{2}{1 + \sqrt{1 - 2 \cdot 10^{-12}} \cdot 10^{-6}}.
\]

The idea would be to do the rest of the calculation on computer. On paper, one might go a little further. First, note the Taylor expansion

\[
\sqrt{1 + t} = 1 + \frac{t}{2} - \frac{t^2}{8} + \frac{t^3}{16} - \ldots.
\]

Using this with \(t = -2 \cdot 10^{-12} \), we obtain that\(^2\)

\[
\sqrt{1 - 2 \cdot 10^{-12}} \approx 1 - 10^{-12} - 10^{-24}/2.
\]

Thus, the right-hand side of (1) approximately equals

\[
\frac{2}{1 + (1 - 10^{-12} - 10^{-24}/2)} \cdot 10^{-6} \approx \frac{2}{2 - 10^{-12}} \cdot 10^{-6} = \frac{1}{1 - 10^{-12}/2} \cdot 10^{-6}.
\]

To estimate the right-hand side here, use the Taylor expansion

\[
\frac{1}{1 - t} = 1 + t + t^2 + \ldots.
\]

This with \(t = 10^{-12} \) shows that the right-hand side of (2) approximately equals

\[
(1 + 10^{-12}/2 + 10^{-24}/4) \cdot 10^{-6} \approx 1.000,000,000 \cdot 10^{-6}.
\]

Note. Instead of rationalizing the denominator, as we did above, one can base the whole calculation on a Taylor series approximation. Using the Taylor series expansion of \(\sqrt{1 + t} \) given above, we have (writing \(x = 10^6 \), as before), that

\[
x - \sqrt{x^2 - 2} = 10^6 - \sqrt{10^{12} - 2} = 10^6 \cdot (1 - \sqrt{1 - 2 \cdot 10^{-12}})
\]

\[
= 10^6 \cdot (1 - (1 - 10^{-12} - 10^{-24}/2) - \ldots) \approx 1.000,000,000 \cdot 10^{-6}.
\]

Usually, the approach involving rationalizing the denominator preferred since it is more general; for example, if one wants to calculate \(x - \sqrt{x^2 - 1} \) for \(x = 100 \), the rationalizing approach would still work without any

\(^{1}\) All computer processing for this manuscript was done under Fedora Linux. \LaTeX was used for typesetting.

\(^{2}\) If one wants to show rigorously that the third term in the next line correctly represents the approximate error in the calculation, one may replace \(-t^2/8\) in the preceding line with the Lagrange remainder term for the Taylor series. Writing \(f(t) = \sqrt{1 + t} \), the term \(-t^2/8\) represents \(f^{(n)}(0)t^2/2! \), while the Lagrange remainder term would be \(f^{(n)}(\xi)t^2/2! = -(1 + \xi)^{-3/2}t^2/8 \) for some \(\xi \) between \(t = -2 \cdot 10^{-12} \) and 0 – clearly, the difference between these terms is negligible. Much the same comment applies to our estimate of \(1/(1 - t) \) below.
change, while in the Taylor series approach one would need to calculate more terms to get a satisfactory precision.

b) Find $1 - \cos 0.009$ with 10 decimal digit accuracy.

Solution. Calculating $1 - \cos 0.009$ directly would lead to an unnecessary and unacceptable loss of accuracy. It is much better to use the Taylor series of $\cos x$ with $x = 9 \cdot 10^{-3}$:

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \ldots.$$

For $|x| \leq 1$ this is an alternating series, and so, when summing finitely many terms of the series, the error will be less than the first omitted term. With $x = 9 \cdot 10^{-3}$, we have

$$\frac{x^6}{6!} < x^6 < 0.01^6 = 10^{-12},$$

so this term can be safely omitted. Thus, with x as above, we have

$$1 - \cos 0.009 = 1 - \cos x \approx \frac{x^2}{2} - \frac{x^4}{24} \approx .000,040,500,000 - .000,000,000,273 = .000,040,499,727.$$

2. a) Evaluate

$$\sqrt{x+y^2}$$

for $x = 5 \pm 0.04$ and $y = 2 \pm 0.08$.

Solution. There is no problem with the actual calculation. With $x = 5$ and $y = 2$ we have

$$\sqrt{x+y^2} = \sqrt{9} = 3.$$

The real question is, how accurate this result is? Writing

$$f(x, y) = \sqrt{x+y^2},$$

we estimate the error of f by its total differential

$$df(x, y) = \frac{\partial f(x, y)}{\partial x} dx + \frac{\partial f(x, y)}{\partial y} dy = \frac{1}{2\sqrt{x+y^2}} dx + \frac{y}{\sqrt{x+y^2}} dy,$$

where $x = 5$, $y = 2$, and $dx = \pm 0.04$ and $dy = \pm 0.08$, that is, $|dx| \leq 0.04$ and $|dy| \leq 0.08$. Thus

$$|df(x, y)| \leq \frac{1}{2\sqrt{x+y^2}} |dx| + \frac{y}{\sqrt{x+y^2}} |dy| \approx \frac{1}{2} \cdot 0.04 + \frac{2}{3} \cdot 0.08 = \frac{0.02 + 0.16}{3} = 0.06.$$

Thus $f(x, y) = 3 \pm 0.06$.

b) The leading term of the Newton interpolation polynomial P to a function f with the nodes x_0, x_1, \ldots, x_n is

$$f[x_0, x_1, \ldots, x_n]x^n.$$

\[\text{It is more natural to write } \Delta x \text{ and } \Delta y \text{ for the errors of } x \text{ and } y, \text{ but in the total differential below one customarily uses } dx \text{ and } dy.\]
Using this, show that

\[
\begin{align*}
 f[x_0, x_1, \ldots, x_n] &= \frac{f^{(n)}(\xi)}{n!}
\end{align*}
\]

for some \(\xi \) in the interval spanned by \(x_0, x_1, \ldots, x_n \). (All the nodes \(x_0, x_1, \ldots, x_n \) are assumed to be distinct.)

Solution. Taking the \(n \)th derivative of the polynomial \(P \), only the derivative of the leading term survives. That is,

\[
P^{(n)}(x) = n!f[x_0, x_1, \ldots, x_n].
\]

On the other hand, \(f(x) - P(x) \) has at least \(n + 1 \) zeros, \(x_0, x_1, \ldots, x_n \). Hence \(f^{(n)}(x) - P^{(n)}(x) \) has at least one zero in the interval spanned by \(x_0, x_1, \ldots, x_n \). Writing \(\xi \) for such a zero, we have

\[
0 = f^{(n)}(\xi) - P^{(n)}(\xi) = f^{(n)}(\xi) - n!f[x_0, x_1, \ldots, x_n].
\]

Omitting the middle member of these equations and solving the remaining equality, we obtain

\[
f[x_0, x_1, \ldots, x_n] = \frac{f^{(n)}(\xi)}{n!}.
\]

as we wanted to show.

3. a) Find the Lagrange interpolation polynomial \(P(x) \) such that \(P(1) = -3 \), \(P(3) = -1 \), \(P(4) = 3 \).

Solution. Write \(x_1 = 1, x_2 = 3, x_3 = 4 \). We have

\[
\begin{align*}
 l_1(x) &= \frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)} = \frac{(x-3)(x-4)}{(1-3)(1-4)} = \frac{1}{6}(x-3)(x-4), \\
 l_2(x) &= \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)} = \frac{(x-1)(x-4)}{(3-1)(3-4)} = \frac{1}{2}(x-1)(x-4), \\
 l_3(x) &= \frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)} = \frac{(x-1)(x-3)}{(4-1)(4-3)} = \frac{1}{3}(x-1)(x-3).
\end{align*}
\]

Thus, we have

\[
P(x) = P(1)l_1(x) + P(3)l_2(x) + P(4)l_3(x) = -3 \cdot \frac{1}{6}(x-3)(x-4) + (-1) \cdot \left(-\frac{1}{2} \right)(x-1)(x-4)
\]

\[
+ 3 \cdot \frac{1}{3}(x-1)(x-3) = -\frac{1}{2}(x-3)(x-4) + \frac{1}{2}(x-1)(x-4) + (x-1)(x-3) = x^2 - 3x - 1.
\]

b) Estimate the error of Lagrange interpolation when interpolating \(f(x) = 1/x \) at \(x = 2 \) when using the interpolation points \(x_1 = 1, x_2 = 4, \) and \(x_3 = 5 \).

Solution. Noting that the third derivative of \(1/x \) equals \(-6/x^4\), with \(f(x) = 1/x \) and with some \(\xi \) between 1 and 5, for the error at \(x = 2 \) we have

\[
E(x) = f'''(\xi) \frac{(x-1)(x-4)(x-5)}{3!} = -\frac{6}{\xi^4} \frac{(2-1)(2-4)(2-5)}{6} = -\frac{6}{\xi^4}
\]

according to the error formula of the Lagrange interpolation, where \(\xi \) is some number in the interval spanned by \(x, x_1, x_2, \) and \(x_3, \) i.e., in the interval (1, 5). Clearly, the right-hand side is smallest for \(\xi = 1 \) and largest for \(x = 5 \). Thus we have

\[
-6 < E(5) < -\frac{6}{625}.
\]

We have strict inequalities, since the values \(\xi = 1 \) and \(\xi = 5 \) are not allowed.
4. Find the Newton-Hermite interpolation polynomial for \(f(x) \) with \(f(2) = 4, f'(2) = 15, f(4) = 10, f'(4) = 39, f''(4) = 28 \).

 a) First, write the divided difference table, using the points 2, 4 in natural order.

 Solution. We have \(f[x] = f(x) \); hence \(f[2] = 4 \) and \(f[4] = 10 \). Further, \(f[x, x] = f'(x) \); hence \(f[2, 2] = 15 \) and \(f[4, 4] = 39 \). Finally, \(f[x, x, x] = (1/2)f''(x) \); so \(f[4, 4, 4] = 14 \). Next

 \[
 f[2, 4] = \frac{f[4] - f[2]}{4 - 2} = \frac{10 - 4}{2} = 3,
 \]

 \[
 f[2, 2, 4] = \frac{f[2, 4] - f[2, 2]}{4 - 2} = \frac{3 - 15}{2} = -6,
 \]

 and

 \[
 f[2, 4, 4] = \frac{f[4, 4] - f[2, 4]}{4 - 2} = \frac{39 - 3}{2} = 18.
 \]

 Therefore,

 \[
 f[2, 2, 4, 4] = \frac{f[2, 4, 4] - f[2, 2, 4]}{4 - 2} = \frac{18 + 6}{2} = 12,
 \]

 and

 \[
 f[2, 4, 4, 4] = \frac{f[4, 4, 4] - f[2, 4, 4]}{4 - 2} = \frac{14 - 18}{2} = -2,
 \]

 and

 \[
 f[2, 2, 4, 4, 4] = \frac{f[2, 4, 4, 4] - f[2, 2, 4, 4]}{4 - 2} = \frac{-2 - 12}{2} = -7.
 \]

 We can summarize these values in a divided difference table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f[.])</th>
<th>(f[,])</th>
<th>(f[,])</th>
<th>(f[x, , ,])</th>
<th>(f[x, , , ,])</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>15</td>
<td>-6</td>
<td>12</td>
<td>-7</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>10</td>
<td>3</td>
<td>18</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>39</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 b) Using the divided difference table, write the Newton-Hermite interpolation polynomial using the order of points 2, 2, 4, 4, 4.

 Solution. We have

 \[
P(x) = f[2] + f[2, 2](x - 2) + f[2, 2, 4](x - 2)(x - 2) + f[2, 2, 4, 4](x - 2)(x - 2)(x - 2)(x - 2)
 \]

 \[
 + f[2, 2, 4, 4, 4](x - 2)(x - 2)(x - 2)(x - 2)(x - 2)
 = 4 + 15(x - 2) - 6(x - 2)^2 + 12(x - 2)^2(x - 4) - 7(x - 2)^2(x - 4)^2.
 \]

 c) Using the divided difference table, write the Newton-Hermite interpolation polynomial using the order of points 4, 2, 4, 2, 4.

 Solution. We have

 \[
P(x) = f[4] + f[4, 2](x - 4) + f[4, 2, 4](x - 4)(x - 4) + f[4, 2, 4, 4](x - 4)(x - 4)(x - 4)(x - 4)
 \]

 \[
 + f[4, 2, 4, 4, 4](x - 4)(x - 4)(x - 4)(x - 4)(x - 4)
 = 10 + 3(x - 4) + 18(x - 2)(x - 4) + 12(x - 2)(x - 4)^2 - 7(x - 2)^2(x - 4)^2.
 \]
5. a) Consider the equation \(f(x) = 0 \) with \(f(x) = 2 - x + \ln x \). Using Newton’s method with \(x_0 = 3 \) as a starting point, find the next approximation to the solution of the equation.

Solution. We have

\[
x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = x_0 - \frac{2 - x_0 + \ln x_0}{\frac{1}{x_0} - 1} = 3 - \frac{-1 + \ln 3}{-2/3} = \frac{3 + 3 \ln 3}{2} \approx 3.14792.
\]

The actual solution is approximately 3.14619.

b) Evaluate the derivative of \(P(x) = x^3 - 4x^2 + 6x + 4 \) at \(x = 2 \) using Horner’s method. Show the details of your calculation.

Solution. We have \(a_0 = 1, \ a_1 = -4, \ a_2 = 6, \ a_3 = 4 \), and \(x_0 = 2 \). Further, we have \(b_0 = a_0 \) and \(b_k = a_k + b_{k-1}x_0 \) for \(k \) with \(0 < k \leq 3 \). Therefore,

\[
b_0 = a_0 = 1,
\]
\[
b_1 = a_1 + b_0 x_0 = -4 + 1 \cdot 2 = -2,
\]
\[
b_2 = a_2 + b_1 x_0 = 6 + (-2) \cdot 2 = 2,
\]
\[
b_3 = a_3 + b_2 x_0 = 4 + 2 \cdot 2 = 8.
\]

Actually, we did not need to calculate \(b_3 \), since it is not used in calculating the derivative. The derivative as \(x = 2 \) is the value for \(x = 2 \) of the polynomial \(b_0 x^2 + b_1 x + b_2 \). Using Horner’s rule, this can be calculated by first calculating the coefficients \(c_0 = b_0 \) and \(c_k = b_k + c_{k-1} \) for \(k \) with \(0 < k \leq 2 \), and then value of the polynomial being considered will be \(c_2 \). That is,

\[
c_0 = b_0 = 1,
\]
\[
c_1 = b_1 + c_0 x_0 = -2 + 1 \cdot 2 = 0,
\]
\[
c_2 = b_2 + c_1 x_0 = 2 + 0 \cdot 2 = 2.
\]

That is, \(P'(2) = c_2 = 2 \). It is easy to check that this result is correct. There is no real saving when the calculation is done for a polynomial of such low degree. For higher degree polynomials, there is definitely a saving in calculation. Another advantage of the method, especially for computers, is that the formal differentiation of polynomials can be avoided.

c) Let \(P \) and \(Q \) be polynomials, let \(x_0 \) and \(r \) be a numbers, and assume that

\[
P(x) = (x - x_0)Q(x) + r.
\]

Show that \(P'(x_0) = Q(x_0) \).

Solution. We have

\[
P'(x) = Q(x) + (x - x_0)Q'(x)
\]

simply be using the product rule for differentiation. Substituting \(x = x_0 \), we obtain that \(P'(x_0) = Q(x_0) \).

Note: The coefficients of the polynomial \(Q(x) \) can be produced by Horner’s method. By another use of Horner’s method, we can evaluate \(Q(x_0) \). This provides an efficient way to evaluate \(P'(x) \) on computers without using symbolic differentiation.