Exam 1, Mathematics 4701, Section TY?2 21 copies
1:25 pm—-3:25 pm, Feb 28, 2019, TH-137
Instructor: Attila Maté!

1.a) Calculate z — v/z2 — 2 for z = 1,000,000 with 6 significant digit accuracy. Avoid the loss of
significant digits.

Solution. We cannot use the expression given directly, since x and vx2 — 1 are too close, and their
subtraction will result in a loss of precision. To avoid this, note that

Va2 —2 2
x—\/x2—2:(x— x2—2)-x+ i = :
r+vVr2—2 4V -2

To do the numerical calculation, it is easiest to first write that 2 = g - 106, where y = 1. Then

2 6 _ 2 -6

2
= 1070 = 1
T+Va2—2 y+y? 21012 1+vV1I—2-10 12

The idea would be to do the rest of the calculation on computer. On paper, one might go a little further.
First, note the Taylor expansion

(1)

\/l—i—t—l—i—E—i—&-ﬁ—
o 2 8 16 7

Using this with ¢ = —2 - 107'2, we obtain that?

V1-2-10712~1-10""2 - 1072/2.

Thus, the right-hand side of (1) approximately equals

2 2
2 107 ———— 1070 =
@ 1+ (1-10-12 —10-24/2) 0 sz

To estimate the right-hand side here, use the Taylor expansion

S
= -

This with ¢t = 10712 shows that the right-hand side of (2) approximately equals

(1+107*2/2 +1072*/4) - 107% ~ 1.000, 000, 000 - 10~°.

Note. Instead of rationalizing the denominator, as we did above, one can base the whole calculation on
a Taylor series approximation. Using the Taylor series expansion of /1 + ¢ given above, we have (writing
x = 10%, as before), that

r—Va2 -2=10° - /1012 =2 =10°- (1 — /1 —2-10-12)

=10°-(1-(1-10"" - —— — —— —...) =~ 1.000, 000,000 - 10~°.

Usually, the approach involving rationalizing the denominator preferred since it is more general; for example,
if one wants to calculate x — v/22 — 1 for z = 100, the rationalizing approach would still work without any

LAll computer processing for this manuscript was done under Fedora Linux. AnS-TEX was used for typesetting.
2If one wants to show rigorously that the third term in the next line correctly represents the approximate error in the
calculation, one may replace —t2/8 in the preceding line with the Lagrange remainder term for the Taylor series. Writing f(t) =

VI+ ¢, the term —t2/8 represents f”(0)t2/2!, while the Lagrange remainder term would be f”(£)t?/2! = —(1 + £)~3/2¢2/8
for some £ between t = —2 - 10712 and 0 — clearly, the difference between these terms is negligible. Much the same comment

applies to our estimate of 1/(1 — t) below.
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change, while in the Taylor series approach one would need to calculate more terms to get a satisfactory
precision.

b) Find 1 — cos0.009 with 10 decimal digit accuracy.

Solution. Calculating 1— cos0.009 directly would lead to an unnecessary and unacceptable loss of accuracy.
It is much better to use the Taylor series of cosz with = 9 - 1073:

00 Lo N
cosx:Z(—l) ~(2n)!:1—5+1—a....
n=0

For |z| < 1 this is an alternating series, and so, when summing finitely many terms of the series, the error
will be less than the first omitted term. With z = 91073, we have

6

% < 2% <0.015=10"12,

so this term can be safely omitted. Thus, with x as above, we have

Z‘Q

2

™

1—-c0s0.009=1—-cosz ~ ~ .000, 040, 500, 000 — .000, 000, 000, 273 = .000, 040, 499, 727.

l\)‘&
NG

2.a) Evaluate

T+ 92

for x =5+ 0.04 and y = 2 4+ 0.08.

Solution. There is no problem with the actual calculation. With x = 5 and y = 2 we have

Vr+y2=v9=3.

The real question is, how accurate this result is? Writing

f(xy) = Vo +y?,

we estimate the error of f by its total differential

0 0
féﬂ;y) f(x,y)dy: LM

dy 2\/x +y? vV + y?

where x = 5, y = 2, and dz = +0.04 and dy = £0.08, that is, |dz| < 0.04 and |dy| < 0.08.> Thus

df (z,y) = dx + dy,

1 Yy
ldf (z,y)| < | —F—=| ldz| + | ——=| |dy|
2v/x + 1?2 v+ y?
1 2 0.02 +0.16
S — 004+ =-0.08= —————— =10.06.
~2.3 +3 3

Thus f(z.y) ~ 3 £ 0.06.

b) The leading term of the Newton interpolation polynomial P to a function f with the nodes xg, 21,
. Xy s

f[x07x17 e 7(En]xn~

3It is more natural to write Az and Ay for the errors of z and y, but in the total differential below one customarily uses
dz, and dy.
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Using this, show that

S
f[anxlv"'vmn]: '()
n!
for some ¢ in the interval spanned by xg, x1, ... x,. (All the nodes xg, x1, ... x, are assumed to be

distinct.)

Solution. Taking the nth derivative of the polynomial P, only the derivative of the leading term survives.
That is,
P"(z) = nlf[xg, 1, &l

On the other hand, f(x)— P(z) has at least n+ 1 zeros, g, 1, ... Tn. Hence f(")(z) — P (x) has at least
one zero in the interval spanned by zg, z1, ... x,. Writing £ for such a zero, we have

0= f™ (&) — PM() = fM™(€) — nlf[wo, x1, - , 2.

Omitting the middle member of these equations and solving the remaining equality, we obtain

)

n!

f[.’l?o,xl,"' 7xn] =
as we wanted to show.
3.a) Find the Lagrange interpolation polynomial P(z) such that P(1) = -3, P(3) = —1, P(4) = 3.
Solution. Write 1 =1, o = 3, 3 = 4. We have

_ oz (@@ 1 g0
ll(x) - (.Tl —.%‘2)(.’171 —333) N (1 _3)(1 _4) a 6( 3)( 4)’

(x—z1)(x—23) (z—1)(xz—4

) ( 1) 1,

() = (o —x1)(m2 —x3)  (3-1)(3—4) ( D=4,
(- m)(r—z2)  (x—1)(z—3) z— 1) —

@) = o) @ —ee)  A—D—3) 3* " HNE=3)

Thus, we have

P(e) = PL(@) + POa() + PU() = -3 5o =3 =)+ (1) (-3) (0= D= 1)

—&—3-%(3@—1)(30—3):—%(x—?))(m—él)—l-%(m—1)(95—4)—&—(36—1)(30—3):x2—3x—1.

b) Estimate the error of Lagrange interpolation when interpolating f(z) = 1/x at © = 2 when using
the interpolation points z1 = 1, x5 = 4, and 3 = 5.

Solution. Noting that the third derivative of 1/x equals —6/z%, with f(z) = 1/x and with some & between
1 and 5, for the error at x = 2 we have

according to the error formula of the Lagrange interpolation, where £ is some number in the interval spanned
by z, z1, 2, and x3, i.e., in the interval (1,5). Clearly, the right-hand side is smallest for £ = 1 and largest

for x = 5. Thus we have 6
—-6< E(B) < ——
(5) 625

We have strict inequalities, since the values ¢ =1 and £ = 5 are not allowed.
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4. Find the Newton-Hermite interpolation polynomial for f(x) with f(2) = 4, f'(2) = 15, f(4) = 10,
F/(4) =39, f(4) = 28.
a) First, write the divided difference table, using the points 2, 4 in natural order.
Solution. We have f[z] = f(z); hence f[2] =4 and f[4] = 10. Further, f[z,z] = f'(x); hence f[2,2] =15
and f[4,4] = 39. Finally, f[z,z,z] = (1/2)f"(x); so f[4,4,4] = 14. Next

4~ f12) 104 _

2,4] = =
R
f[2a4]_f[272] 3—15
2,2.4] = = - _
224 4—2 2 6,
and fl4,4] — f[2,4] 39-3
2,44 =222 T %7 2 g,
f[ b b } 4_2 2 8
Therefore,
2.4.4] — f[2,2.4 1
f2.2,4,0 = A TR2A 18 EE
4—2 2
f[47474]_f[274u4] 14 —18
2,4,4,.4] = = - _
f[ b ) ) ] 4_2 2 27
and f12,4,4,4] — f[2,2,4,4] 2—12
2,244 4 =222 ST 2 2 7
f[ ) ) ) ) ] 4_2 2 7
We can summarize these values in a divided difference table:
T I Il ] Floves ] flz, o] flee .
2 4
15
2 4 —6
3 12
4 10 18 -7
39 -2
4 10 14
39
4 10

b) Using the divided difference table, write the Newton-Hermite interpolation polynomial using the
order of points 2, 2, 4, 4, 4.

Solution. We have
P(z) = f[2] + f[2,2](z — 2) + f[2,2,4](z = 2)(z = 2) + [[2,2,4,4](z = 2)(z — 2)(z — 4)
+ f12,2,4,4,4)(z — 2)(x — 2)(x — 4)(z — 4)
=4+15(x—2) —6(x —2)2 +12(x — 2)*(z — 4) — T(x — 2)*(z — 4)*.

¢) Using the divided difference table, write the Newton-Hermite interpolation polynomial using the
order of points 4, 2, 4, 2, 4.

Solution. We have
P(z) = fl4] + fl4,2](x —4) + f[4,2,4](x — 4)(x — 2) + f[4,2,4,2](x — 4)(z — 2)(z — 4)
+ f4,2,4,2,4)(x — 4)(xz — 2)(z — 4)(z — 2)

=10+ 3(x —4) + 18(x — 2)(x — 4) + 12(x — 2)(z — 4)* — T(x — 2)*(x — 4)°.
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5.a) Consider the equation f(z) =0 with f(z) =2 — 2 + Inz. Using Newton’s method with 2o = 3 as
a starting point, find the next approximation to the solution of the equation.

Solution. We have

N 2 — 10+ 1nxzg —14+In3 3+3In3
1 = X — =T — — =

= = ~ 3.14792.
/(o) ] ~2/3 2

The actual solution is approximately 3.14619.

b) Evaluate the derivative of P(z) = 2® — 422 + 62 + 4 at * = 2 using Horner’s method. Show the
details of your calculation.

Solution. We have a9 = 1, a1 = —4, as = 6, ag3 = 4, and g = 2. Further, we have by = ag and
br, = ap + bp_1x9 for k with 0 < k < 3. Therefore,

b():(l():].,

by =a1 +bgrg=—-4+1-2=-2,
b2=a2+b1x0:6—|—(—2)-2:2,
by =a3+boxg=4+2-2=28.

Actually, we did not need to calculate bs, since it is not used in calculating the derivative. The derivative as
x = 2 is the value for £ = 2 of the polynomial byz? + by + by. Using Horner’s rule, this can be calculated
by first calculating the coefficients cg = bg and ¢ = b + cx_1 for k with 0 < k& < 2, and then value of the
polynomial being considered will be cy. That is,

Cozb():l,

01:b1+60$0:—2+1'2:0,
co=by+crxo=2+0-2=2.

That is, P/(2) = ca = 2. It is easy to check that this result is correct. There is no real saving when the
calculation is done for a polynomial of such low degree. For higher degree polynomials, there is definitely
a saving in calculation. Another advantage of the method, especially for computers, is that the formal
differentiation of polynomials can be avoided.

¢) Let P and ) be polynomials, let zp and 7 be a numbers, and assume that
P(z) = (z — 20)Q(z) + 1

Show that P'(x0) = Q(x0).

Solution. We have

Pl(z) = Q(z) + (z — 20)Q'(x)
simply be using the product rule for differentiation. Substituting x = x¢, we obtain that P’(z¢) = Q(xo).

Note: The coefficients of the polynomial @Q(z) can be produced by Horner’s method. By another use
of Horner’s method, we can evaluate Q(xg). This provides an efficient way to evaluate P’(x) on computers
without using symbolic differentiation.



