
Exam 2, Mathematics 4701, Section TY2 21 copies
1:25 pm–3:25 pm, March 28, 2019, IH-137

Instructor: Attila Máté1

1.a) Consider the formula

f̄(x, h) =
f(x+ h)− f(x− h)

2h

to approximate the derivative of a function f . Assume we are able to evaluate f with about 5 decimal
precision. Assume, further, that f ′′′(1) ≈ 1. What is the best value of h to approximate the derivative?

Solution. We have

f ′(x) =
f(x+ h)− f(x− h)

2h
− f ′′′(x)

3!
h2 +O(h3).

We are able to evaluate f(x) with 5 decimal precision, i.e., with an error of 5 · 10−6. Thus, the (absolute

value of the maximum) error in evaluating f(x+h)−f(x−h)
2h is 5 · 10−6/h. So the total error (roundoff error

plus truncation error) in evaluating f ′(x) is

5 · 10−6

h
+

f ′′′(x)

6
h2 ≈ 5 · 10−6

h
+

h2

6
,

as f ′′′(x) ≈ 1. The derivative of the right-hand side with respect to h is

−5 · 10−6

h2
+

h

3
.

Equating this with 0 gives the place of minimum error when h3 = 15 · 10−6, i.e., h ≈ 0.0246.

b) Given a certain function f , we are using the formula

f̄(x, h) =
f(x+ h)− f(x− h)

2h

to approximate its derivative. We have

f̄(1, 0.1) = 5.135, 466, 136 and f̄(1, 0.2) = 5.657, 177, 752

Using Richardson extrapolation, find a better approximation for f ′(1).

Solution. We have

f ′(x) = f̄(x, h) + c1h
2 + c2h

4 . . .

f ′(x) = f̄(x, 2h) + c1(2h)
2 + c2(2h)

4 . . .

with some c1, c2, . . . . Multiplying the first equation by 4 and subtracting the second one, we obtain

3f ′(x) = 4f̄(x, h)− f̄(x, 2h)− 12c2h
4 + . . . .

That is, with h = 0.1 we have

f ′(x) ≈ 4f̄(x, h)− f̄(x, 2h)

3
≈ 4 · 5.135, 466, 136− 5.657, 177, 752

3
= 4.961, 56

The function in the example is f(x) = x tanx and f ′(1) = 4.982, 93.

2.a) The equation ex − x2 − 4 = 0 has one solution; a good approximation to this solution is 2.16. Find
a way to improve this approximation by fixed-point iteration.

1All computer processing for this manuscript was done under Fedora Linux. AMS-TEX was used for typesetting.
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Solution. Write the above equation as x = f(x) with f(x) = ln(x2 + 4). Then

f ′(x) =
2x

x2 + 4
.

It is easy to see that |f ′(x)| < 1 for every real x. In fact, the equation 2x = x2 + 4 can be written as
(x−1)2+3 = 0. Since this equation has no real solution, one can easily conclude that 2x < x2+4 (since this
inequality holds for negative values of x, and so it must hold for every real value of x by the Intermediate-
Value Theorem for continuous functions). Thus it follows that f ′(x) < 1 for all positive x. Hence it is clear
that |f ′(x)| < 1 for all real x, as claimed.

Starting with x0 = 2.16 and taking xn+1 = f(xn), we have x1 = 2.15936, x2 = 2.15904, x3 = 2.15888,
x4 = 2.15880, x5 = 2.15877, x6 = 2.15875, x7 = 2.15874, x8 = 2.15873, x9 = 2.15873, etc. With x = x9, we
have ex − x2 − 4 = 0.0000105251.

It also follows that there is a number q < 1 such that |f ′(x)| ≤ q for every real x. The smallest such q
can be found with a little effort, but the existence of such a q can easily be established as follows. We have
limx→±∞ f ′(x) = 0. Therefore, for each positive ǫ < 1 there is an R > 0 such that |f ′(x)| < ǫ whenever
|x| > R. Let M be the maximum of |f ′(x)| on the interval [−R,R]; there is such a maximum M by the
Maximum-Value Theorem. Clearly, M < 1, since |f ′(x)| < 1 for every x. Take

q = max(M, ǫ).

As |f ′(x)| < q for every x, fixed point iteration will converge with any starting point.
Note. The equation x = g(x) with g(x) =

√
ex − 4 does not work with fixed point iteration to solve the

above equation. In fact,

g′(x) =
ex

2
√
ex − 4

,

and g′(2.16) ≈ 2.00602.

b) State the usual sufficient condition for the fixed-point iteration to converge when solving the equa-
tion x = f(x).

Solution. The condition is described be the following

Theorem. Assume x = c is a solution of the equation x = f(x). Assume further that there are numbers

r > 0 and q with 0 ≤ q < 1 such that

|f ′(x)| ≤ q for all x with c− r < x < c+ r.

Then starting with any value x1 ∈ (c − r, c + r), the sequence {xn}∞n=1 defined by xn = f(xn−1) for n > 2
converges to c.

3. We want to evaluate
∫ 1

0

ex
2

dx

using the composite trapezoidal rule with three decimal precision, i.e., with an error not exceeding 5 · 10−4.
What value of n should one use when dividing the interval [0, 1] into n parts?

Solution. The error term in the composite trapezoidal rule when integrating f on the interval [a, b] and
dividing the interval into n parts is

− (b− a)3

12n2
f ′′(ξ)

with some ξ ∈ (a, b). We want to use this with a = 0, b = 1, and f(x) = ex
2

. We have

f ′′(x) = (4x2 + 2)ex
2

.
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This function is increasing on the interval [0, 1] (because both factors are increasing. Hence it assumes its
maximum at the right end point, that is, at x = 1. We have f ′′(1) = 6e (≈ 16.309, 691). Since f ′′(x) > 0 on
[−1, 1], we therefore have |f ′′(x)| < 6e for x ∈ (0, 1). So, noting that a = 0 and b = 1, the absolute value of
the error is

(b− a)3

12n2
|f ′′(ξ)| = 1

12n2
|f ′′(ξ)| < 6e

12n2
=

e

2n2
.

In order to ensure that this error is less than 5 · 10−4, we need to have 1/n2 < 10−3/e, i.e.,

n >
√
1000e ≈

√
2718.282 ≈ 52.137.

So one needs to make sure that n ≥ 53. Thus one needs to divide the interval [0, 1] into (at least) 53 parts
in order to get the result with 4 decimal precision while using the trapezoidal rule.

4.a) Let h and k be numbers, and let f(x, y) be a function that is differentiable sufficiently many times
(so all required derivatives exist, and the order of mixed derivatives is interchangeable). Evaluate

(

h
∂

∂x
+ k

∂

∂y

)3

f.

In your answer, you may write fx, fxy, fyy, . . . , for the various derivatives of f .

Solution. The operators h∂/∂x and k∂/∂y commute, and so we can use the binomial theorem:

(

h
∂

∂x
+ k

∂

∂y

)3

f =

(

(

h
∂

∂x

)3

+ 3

(

h
∂

∂x

)2

k
∂

∂y
+ 3h

∂

∂x

(

k
∂

∂y

)2

+

(

k
∂

∂y

)3
)

f

= h3fxxx + 3h2kfxxy + 3hk2fxyy + k3fyyy.

b) Let f(x, y) be a function that is differentiable sufficiently many times. Evaluate

(

∂

∂x
+ f

∂

∂y

)2

f.

Solution. The operators ∂/∂x and f∂/∂y do not commute, so the binomial theorem is not valid in this
case, and the square has to be evaluated by multiplying it out directly, while being careful not to interchange
the order of operators. We have

(

∂

∂x
+ f

∂

∂y

)2

f =

(

∂

∂x
+ f

∂

∂y

)(

∂

∂x
+ f

∂

∂y

)

f =
∂

∂x

∂

∂x
f +

∂

∂x
f
∂

∂y
f + f

∂

∂y

∂

∂x
f + f

∂

∂y
f
∂

∂y
f

= fxx +
∂

∂x
ffy + f

∂

∂y
fx + f

∂

∂y
ffy = fxx +

∂

∂x
(ffy) + f

∂

∂y
fx + f

∂

∂y
(ffy)

= fxx + (fxfy + ffyx) + ffxy + f(fyfy + ffyy) = fxx + fxfy + 2ffxy + f(fy)
2 + f2fyy;

in the second line on the right, we used parentheses to make it clear that the product rule of differentiation
needs to be used to obtain the next expression. Note that the expression on the right-hand side is the same as
the expression for y′′′ in the differential equation y′ = f(x, y). This is not accidental, since y′′′ = (d/dx)3y =
(d/dx)2y′ = (d/dx)2f(x, y), and we have

d

dx
=

∂

∂x
+

dy

dx

∂

∂y
=

∂

∂x
+ f

∂

∂y

according to the chain rule and the equation dy/dx = f(x, y).
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5. Consider the differential equation y′ = f(x, y) with initial condition y(x0) = y0. Show that, with
x1 = x0 + h, the solution at x1 can be obtained with an error O(h3) by the formula

y1 = y0 +
h

4
f(x0, y0) +

3h

4
f

(

x0 +
2h

3
, y0 +

2h

3
f(x0, y0)

)

.

In other words, this formula describes a Runge-Kutta method of order 2.

Solution. Writing f , fx, fy for f and its derivatives at (x0, y0), we have

f

(

x0 +
2h

3
, y0 +

2h

3
f(x0, y0)

)

= f +
2h

3
fx +

2h

3
f · fy +O(h2).

according to Taylor’s formula in two variables. Substituting this into the above formula for y1, we obtain

y1 = y0 +
h

4
f +

3h

4

(

f +
2h

3
fx +

2h

3
f · fy +O(h2)

)

= y0 + hf +
h2

2
(fx + ffy) +O(h3).

This agrees with the Taylor expansion of y1 (given in the preceding program) with error O(h3), showing that
this is indeed a correct Runge-Kutta method of order 2.

This method is called the optimal Runge-Kutta method of order 2, because it can be shown that among
Runge-Kutta methods of order 2 it minimizes the local truncation error.

4


