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The secondary source of some of the problems on the prize exams is the Web
site

http://problems.math.umr.edu/index.htm
(A web site for 20,000 math problems). This site lists many problems but gives
no solutions. The primary source for each problem is listed below when available;
but even when the source is given, the formulation of the problem may have been
changed. Solutions for the problems presented here were obtained without consult-
ing sources for these solutions even when available, and additional information on
how to solve these problems might be obtained by consulting the original sources.
There was some overlap between the problems on the Junior and Senior prize ex-
ams; the problems common to both exams are listed only once.

1) (JUNIOR 1 and SENIOR 1) Prove that n4 + 3n2 + 2 is never a square of an
integer.

Source: http://mathschallenge.net/index.php?section=problems&show=
true&titleid=imperfect_square_sum

First Solution: The reason is that n4 + 3n2 + 2 is always even, but never
divisible by 4; so it cannot be a square of an integer.

In fact, n4 + 3n2 is always divisible by 4. This is clear if n is even. If n is
odd, then then n2 + 3 is divisible by 4. Indeed, writing n = 2k + 1, we have
n2 + 3 = 4k2 + 4k + 4. So, again, n4 + 3n2 = n2(n2 + 3) is divisible by 4.

Second solution: We have

n4 + 3n2 + 2 = (n2 + 1)(n2 + 2).

The numbers n2 + 1 and n2 + 2 are relatively prime. Their product can be a
square only if each of them is a square (since a number is a square if in its prime
factorization each prime has an even exponent; since there are no common primes
in the prime factorizations of n2 + 1 and n2 + 2, in the prime factorization of each
of them the primes must occur with even exponent so that this be true for their
product). However, n2 + 1 is a square only in case n = 0; n2 + 2 is not a square in
this case.

Third solution: If

k = n4 + 3n2 + 2 = (n2 + 1)(n2 + 2),

then k must be between n2 + 1 and n2 + 2, showing that k cannot be an integer.

2) (JUNIOR 2 and SENIOR 2) Let n be a positive integer. Prove that 2n! is
divisible by 22n−1.
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Source: http://mathschallenge.net/index.php?section=problems&show=
true&titleid=factorial_divisibility

Solution: There are 2n/2 = 2n−1 even numbers between 1 and 2n Each of these
contributes a factor of 2 to 2n!; this shows that 2n! is divisible by 22n−1

.
There are 2n/4 = 2n−2 numbers between 1 and 2n are divisible by 4. Each of

these contributes a factor of 4 to 2n!. However, these numbers are also even, and
the fact that they contribute a factor of 2 to 2n! has already been counted; what
has not been counted is that each of these numbers contribute an additional factor
of 2. This shows that 2n! is divisible by 22n−1+2n−2

.
There are 2n/8 = 2n−3 numbers between 1 and 2n that are divisible by 8. Each

of these contributes a new factor of 2 to 2n! that has not yet been considered
(8 = 4 · 2, but the factor of 4 has already been considered, since these numbers are
also divisible by 4).

Continuing in this manner, we can see that 2n! is divisible by 2 raised to the
power

n∑
k=1

2n

2k
;

the term 2n/2k here arises by noting that, for each k with 1 ≤ k ≤ n, there are
2n/2k numbers divisible by 2k between 1 and 2n; each of these numbers contributes
a factor of 2 to 2n!, not counted for smaller values of k. It is also easy to see that in
this way all factors of 2 of 2n! are counted; that is, 2n! is not divisible by a higher
power of 2. The above sum can be evaluated as

n∑
k=1

2n−k =
n−1∑
l=0

2l = 2n − 1.

That is, 2n! is divisible by 22n−1, and it is not divisible by any higher power of 2.
This argument can be generalized. In fact, Legendre noted that if p is a prime

and n is a positive integer, then the highest power of p that divides n! is p raised
to the power

∞∑
k=1

[
n

pk

]
,

where [x] denotes the integer part of (the largest integer not exceeding) x. The sum
on the right-hand side is, of course, a finite sum, since all terms are zero when k is
so large that pk > n.

3) (JUNIOR 3 and SENIOR 3) Draw a circle of radius 1 at each of the four
vertices of the unit square. Determine the area of the region that is covered by all
four circles.

Source: http://mathschallenge.net/index.php?section=problems&show=
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true&titleid=quarter%20circles
Solution: Inside the unit square, there will be regions covered by exactly two

circles, by exactly three circles, and there will be one region covered by exactly four
circles. The area of this last region is to be determined. Write A for this area.

Let the unit square in consideration be the square with vertices (0, 0), (0, 1),
(1, 1), (1, 0). A typical region covered by exactly two circles is the region next to
the side connecting the points (1, 0) and (1, 1) that is outside the circles centered
at (0, 0) and (1, 1). The area of this region is

B = 2
∫ 1/2

0

(
1−

√
1− x2

)
dx.

Using the substitution x = sin t, which gives dx = cos t dt, we obtain∫ 1/2

0

√
1− x2 dx =

∫ π/6

0

cos2 t dt =
∫ π/6

0

1 + cos 2t
2

dt

=
[
t

2
+

sin 2t
4

]π/6
0

=
π

12
+
√

3
8
.

Thus, the area of the twice covered region under consideration is

B = 1− π/6−
√

3/4.

The four quarter circles cover a total area of π, counting the multiplicity of
covering. Adding 4B, the total area of the four twice covered region, to this, we get
3 +A, 3 being the total area of the unit square being covered three times, and A is
added, since A represents the area of the region that is covered four times. Thus,
we have

π + 4B = 3 +A,

i.e.,
A = π + 4B − 3 = 1 +

π

3
−
√

3 ≈ 0.315, 147

4) (SENIOR 4) Let f and g be non-constant differentiable functions on the real
line such that

(1) f ′(0) = 0,

(2) f(x+ y) = f(x)f(y)− g(x)g(y),

and

(3) g(x+ y) = g(x)f(y) + g(y)f(x).
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Prove that (
f(x)

)2 +
(
g(x)

)2 = 1

for all x
Source: http://www.geocities.com/CapeCanaveral/Lab/4661/Frame_Calc

ulus.html
Problem 4.

Solution: Proof. According to (2), we have

(4)
f ′(x) =

∂f(x+ y)
∂y

∣∣∣∣
y=0

= f(x)f ′(y)
∣∣∣
y=0
− g(x)g′(y)

∣∣∣
y=0

= f(x)f ′(0)− g(x)g′(0) = −g(x)g′(0),

where we used (1) to get the last equality. Similarly, using (3) and (1), we obtain

(5)
g′(x) =

∂g(x+ y)
∂y

∣∣∣∣
y=0

= g(x)f ′(y)
∣∣∣
y=0

+ g′(y)
∣∣∣
y=0

f(x) =

g(x)f ′(0) + g′(0)f(x) = f(x)g′(0).

Hence, writing f2(x) for
(
f(x)

)2, and similarly for g(x),

d

dx

(
f2(x) + g2(x)

)
= 2f(x)f ′(x) + 2g(x)g′(x)

= −2f(x)g(x)g′(0) + 2f(x)g(x)g′(0) = 0;

thus f2(x) + g2(x) is constant.
(4) and (5) imply that g′(0) 6= 0, since otherwise we would have f ′(x) = g′(x) = 0

for all x according to these formulas, whereas f and f are not constant functions,
by assumption. Now, we have

0 = f ′(0)g(0)g′(0),

and so g(0) = 0 follows.
According to (2), we have

f(0) = f(0 + 0) = f(0)f(0)− g(0)g(0) = f2(0)− g2(0) = f2(0),

where the last equation follows, since g(0) = 0, as we just saw. As the only solutions
of the equation z2 = z are z = 0 and z = 1, this implies that f(0) = 0 or 1. The
former is impossible, since the assumption f(0) = 0 together with the equation
g(0) = 0 implies, for all x, that

(2) f(x) = f(x+ 0) = f(x)f(0)− g(x)g(0) = 0,
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according to (2), and

(3) g(x) = g(x+ 0) = g(x)f(0) + g(0)f(x) = 0.

according to (3); this is impossible, since we assumed that f and g are not constant.
Thus f(0) = 1 and g(0) = 0. As we showed that f2(x) + g2(x) is constant, we

have
f2(x) + g2(x) = f2(0) + g2(0) = 1,

which is what we wanted to show.

5) (JUNIOR 4) Assume α and β are acute angles (i.e., 0 < α, β < π/2) such
that

(1) sin2 α+ sin2 β = 1.

Show that

(2) α+ β =
π

2
.

Source: No outside source.
Solution: According to (1), we have

sin2 α+ sin2 β = sin2 α+ cos2 α,

i.e.,
sin2 β = cos2 α,

that is,
sinβ = cosα,

since both sinβ and cosβ are positive. Thus,

sinβ = sin
(π

2
− α

)
.

As the function sinx is one-to-one in the interval (0, π/2), this means that

β =
π

2
− α,

which is what we wanted to show.

6) (JUNIOR 5) Assume the function f on the real line satisfies the equation

(1) f(x)f(y) = f(x+ y)
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for all reals x and y. Assume, further, that f is differentiable at 0. Show that f is
differentiable everywhere.

Source: http://www.geocities.com/CapeCanaveral/Lab/4661/Calculus-2
.html
Problem 7

Solution: Using (1), we have

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

f(x+ h)− f(x+ 0)
h

= lim
h→0

f(x)f(h)− f(x)f(0)
h

= f(x) lim
h→0

f(h)− f(0)
h

= f(x)f ′(0).

7) (SENIOR 5) Assume α and β are acute angles (i.e., 0 < α, β < π/2) such
that

(1) sin2 α+ sin2 β = sin(α+ β).

Show that

(2) α+ β =
π

2
.

Source: http://www.geocities.com/CapeCanaveral/Lab/4661/Frame_Trig
onometry.html
Problem 1.

Solution: Using the addition formula for sin, equation (1) can be rewritten as

sin2 α+ sin2 β = sinα cosβ + cosα sinβ,

that is,

(3.) sinα(sinα− cosβ) + sinβ(sinβ − cosα) = 0

Using the identity

sinx− sin y = 2 cos
x+ y

2
cos

x− y
2

,

we have write

sinα− cosβ = sinα− sin
(π

2
− β

)
= 2 cos

α+ π/2− β
2

sin
α+ β − π/2

2
.

Similarly,

sinβ − cosα = sinβ − sin
(π

2
− α

)
= 2 cos

β + π/2− α
2

sin
α+ β − π/2

2
.
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Substituting these into (3) and dividing by 2, we obtain

sin
α+ β − π/2

2

(
sinα cos

α+ π/2− β
2

+ sinβ cos
β + π/2− α

2

)
= 0.

This equation is certainly satisfied if (2) holds, since then the factor on the left is
zero. On the other hand, if (2) does not hold, we have

sin
α+ β − π/2

2
6= 0,

since α and β are acute angles, so we must have∣∣∣∣α+ β − π/2
2

∣∣∣∣ < π.

In this case, we can divide the last equation by the factor on the left. We obtain

sinα cos
α+ π/2− β

2
+ sinβ cos

β + π/2− α
2

= 0.

All four trigonometric functions on the left have positive values; the main reason
for this is that ∣∣∣∣α+ π/2− β

2

∣∣∣∣ < π

2
and

∣∣∣∣β + π/2− α
2

∣∣∣∣ < π

2
.

Thus the last equation cannot hold, showing that (2) must not fail.

8) (JUNIOR 6) Let a1, a2, . . . , an be positive numbers. Show that

a1

a2
+
a2

a3
+ . . .+

an−1

an
+
an
a1
≥ n.

Source: http://www.geocities.com/CapeCanaveral/Lab/4661/Frame_Ineq
ualities.html
Problem 5

Solution: Writing an+1 = a1, by the inequality of the arithmetic and geometric
means we have

1
n

n∑
k=1

ak
ak+1

≥

(
n∏
k=1

ak
ak+1

)1/n

= 1,

establishing the desired inequality.

9) (JUNIOR 7) Let f be a real-valued function on the real line and assume that

(1) f(xy + x+ y) = f(xy) + f(x) + f(y)
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for all reals x and y. Show that then

(2) f(u+ v) = f(u) + f(v)

for all reals u v.
Source: http://www.geocities.com/CapeCanaveral/Lab/4661/Calculus-2

.html
Problem 6

Solution: Using (1) with y = −x, we have

f(x(−x)) = f(x(−x) + x+ (−x)) = f(x(−x)) + f(x) + f(−x),

and so f(x) + (f(−x)) = 0, i.e., f(−x) = −f(x). In particular, f(0) = 0.
Let u and v be arbitrary such that

(3) u+ v 6= −1,

and determine x and y such that

(4)
xy + x+ y = u,

−xy + x− y = v.

Note that these equations are solvable for x and y in view of the assumption (3).
Indeed, adding these equations, we obtain

2x = u+ v,

and so we can determine x. Subtracting these equations, we obtain

2(x+ 1)y = u− v.

From here we can determine y if x 6= −1, which is guaranteed to hold by the
preceding equation in view of (3).

Using (1), the first equation in (4) implies

f(u) = f(xy + x+ y) = f(xy) + f(x) + f(y),

and the second equation in (4) implies

f(v) = f(x(−y) + x+ (−y)) = −f(x(−y)) + f(x) + f(−y)− f(xy) + f(x)− f(y).

Adding these equations, we obtain

f(u) + f(v) = 2f(x) = 2f
(
u+ v

2

)
.
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That is

f(u) + f(v) = 2f
(
u+ v

2

)
unless u+ v = −1. So, if t 6= −1 we have

f(t) = f(t) + f(0) = 2f
(
t+ 0

2

)
= 2f

(
t

2

)
.

Substitution this with t = u+ v into the preceding equation, this implies

f(u) + f(v) = f(u+ v)

unless u+ v = −1. This establishes (2) unless u+ v = −1.
Now, let u and v be such that u+ v = −1. We have to show that (2) holds also

in this case. Choose t arbitrarily in such a way that t+u+ v 6= −1 and u+ t 6= −1.
Then, using (2) three times while avoiding the exceptional case u + v = −1, we
obtain

f(t) + f(u+ v) = f(t+u+ v) = f(u+ t+ v) = f(u+ t) + f(v) = f(u) + f(t) + f(v),

whence
f(u+ v) = f(u) + f(v)

follows.

10) (SENIOR 6) Show that

ln
101
100

>
2

201
.

You need to give a rigorous proof; approximate numerical calculations done on a
calculator are not accepted.

Source: http://www.geocities.com/CapeCanaveral/Lab/4661/Frame_Non-
numerical.html
Problem 3

Solution: We need to show that

ln
(

1 +
1

100

)
>

1
100

1 + 1
2·100

,

i.e., that
ln(1 + x) >

x

1 + x
2
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for x = 1/100. For any x with 0 < x < 1 we have

ln(1 + x) =
∞∑
n=1

(−1)n−1x
n

n
> x− x2

2
+
x3

3
− x4

4
.

The equation here is the Taylor expansion of ln(1 + x), and the inequality is about
truncating an alternating series saying that the sum an alternating sum is always
between the values of two adjacent partial sums.

Similarly, for any x with 0 < x < 2 we have

1
1 + x

2

=
∞∑
n=0

(−1)n
xn

2n
< 1− x

2
+
x2

4
.

As before, the equation here is a Taylor expansion (or, more simply, the sum formula
for a geometric series), and the inequality is about truncating an alternating series.
Thus,

x

1 + x
2

< x− x2

2
+
x3

4
.

Hence it will be enough to show that

x− x2

2
+
x3

3
− x4

4
> x− x2

2
+
x3

4
,

i.e., that
x3

3
− x4

4
>
x3

4
holds with x = 1/100. This inequality can be written as

x3 > 3x4,

or else as 1 > 3x, and this clearly holds with x = 1/100.

11) (SENIOR 7) At a theater office, there is a line of 2n persons, n of them have
only 10 dollar bills, and n of them have only 20 dollar bills. The ticket costs 10
dollars, and the ticket seller has no change initially. What is the probability that
every person can be given the proper change right at the moment when it is his/her
turn in the line.

Source: http://problems.math.umr.edu/index.htm
Journal: The Mathematical Gazette
Publisher: The Mathematical Association
volume(year)page references:
Proposal: 67(1983)228 by Kee-Wai Lau
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Solution: 68(1984)59
Classification: Probability, money problems, making change

Solution: One can reformulate the problem as a problem of walking from the
point (0, 0) in the coordinate system to the point (2n, 0) in such a way that from
the point (k, l) one can step to the point (k + 1, l + 1) (an upward step) or to the
point (k + 1, l− 1) (a downward step). What is the probability that one never has
to step below the x axis.

Let pk be the probability that one can walk to from the point (0, 0) to the point
(2k, 0) without stepping below the x axis. Consider the event Ek that one walks
from the point (0, 0) to the point (2n, 0) in such a way that one steps below the
x axis that one reaches the point (2k, 0) without stepping below the x axis, but
the next step is a downward step (i.e., one first gets below the x axis at the point
(2k + 1,−1). The probability of Ek is pk/2, since after reaching the point (2k, 0),
the probability of a downward step is 1/2.

The events Ek are clearly disjoint. The union of all events Ek for 0 ≤ k ≤ n− 1
is the event that the walk does get below the x axis; so its complement is the
event that one never steps below the x axis. This consideration gives the recursive
formula

pn = 1− 1
2

n−1∑
k=0

pk.

Furthermore, we have p0 = 1.
It follows from the above recursive formula together with the initial condition

p0 = 1 that pn = 2−n. Indeed, this is true for n = 0. Assuming that we have
pk = 2−k for k < n, we obtain

pn = 1− 1
2

n−1∑
k=0

2−k = 1− 1
2
· 2−n − 1

2−1 − 1
= 1− (1− 2−n) = 2−n,

which is what we wanted to show.
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