
Junior Prize Exam

Spring 2005

1) List the digits that can occur as the last digit of the fourth power of an integer written
in the decimal system.

Solution: The possible digits are the last digits of 04 = 0, 14 = 1, 24 = 16, 34 = 81,
44 = 256, 54 = 625, 64 = 1296, 74 = 2041, 84 = 4096, and 94 = 6561 (of course, to
determine the last digit, there is no need to calculate all digits of these powers). That is,
the possible last digits are 0, 1, 5, and 6.

Note. Instead of doing actual calculations, one can refer to Fermat’s theorem. Namely,
if 5 is not a divisor of n, then, according to Fermat’s Little Theorem, n4 ≡ 1 mod 5. This
allows the last digit of n4 to be 1 and 6. If 5 is a divisor of n, then 5 is also a divisor of n4;
this allows the last digit of n4 to be either 0 or 5. This argument shows that the last digit
of n4 can only be 0, 1, 5, and 6. To complete the solution of the problem, one stilll has
to show that these numbers can actually occur as the last digit of n4 by giving examples:
04 = 0, 14 = 1, 24 = 16, and 54 = 625,

2) Let f be a function defined for all real numbers x such that

(1) f(x+ 1) + f(x− 1) =
√

2f(x)

holds for all real x. Prove that f is periodic.
Source: A problem in the Rózsa Péter Memorial Competition in Hungary, 2001. See

Középiskolai Matematikai és Fizikai Lapok (Mathematics and Physics Journal for Sec-
ondary Schools), Budapest (Hungary), Vol. 53 (January 2003), p. 16.

Solution: Multiplying the above equation by
√

2, we obtain

(2)
√

2f(x+ 1) +
√

2f(x− 1) = 2f(x).

Noting that equation (1) implies with x+ 1 and x− 1, respectively, replacing x that

(3)
√

2f(x+ 1) = f(x+ 2) + f(x)

and √
2f(x− 1) = f(x) + f(x− 2),

and substituting these into (2), we obtain

f(x+ 2) + 2f(x) + f(x− 2) = 2f(x),

i.e.,
f(x+ 2) = −f(x− 2).

1



This is valid for every real x; that is, we have f(x+ 4) = −f(x) and f(x+ 8) = f(x+ 4).
That is, f(x+ 8) = f(x) for all x, showing that f is indeed periodic.

A deeper understanding of this problem can be gained if one considers the forward shift
operator E, acting on functions defined for reals (that is, given such a function f , Ef is
another such function, defined by the equation

(Ef)(x) = f(x+ 1) for all real x.

One usually omits the parentheses, and instead of (Ef)(x) one writes Ef(x). One can add
the definitions E0f = f , and Ek+1f = E(Ek)f .1 With this equation (2) can be written as

√
2Ef = f + E2f,

or as

(4) (E2 −
√

2E + 1)f = 0.

Considering this as the equation E2 − 2E + 1 = 0, one obtains the solutions

E =
1√
2

+
1√
2
i and E =

1√
2
− 1√

2
i,

where i =
√
−1. The numbers on the right-hand side are eighth roots of unity; i.e., for

these values of E, we have E8 = 1. That is, this formal argument shows that we have
E8f = f , or else f(x+ 8) = f(x) for all x.

This argument is purely formal, yet it can be turned into a rigorous proof. Namely, the
fact that the zeros of the polynomial X2 − 2X + 1 are eighth roots of unity means that
this polynomial divides the polynomial X8 − 1. In fact,

(X4 − 1)(X2 +
√

2X + 1)(X2 −
√

2X + 1) = X8 − 1.

Since calculations with E obey the rules of a polynomial ring over the reals, this means
that

(E4 − 1)(E2 +
√

2E + 1)(E2 −
√

2E + 1)f = (E8 − 1)f.

The left-hand side here is 0 according to (4), showing (now rigorously) that (E8−1)f = 0,
i.e., that E8f = f , or else that f(x+ 8) = f(x) for all x.

3) Assume f is a function such that (i) f continuous for x ≥ 0, (ii) f is differentiable
for x > 0, (iii) f(0) = 0, and (iv) f ′ is increasing for x > 0. Write

g(x) =
f(x)
x

for x > 0.

1In fact, one can write E−1f(x) = f(x−1), and then equation (1) can be written as (E+E−1)f =
√

2f .
However, the rigorous justification of the arguments below is simpler if one stays within the polynomial

ring R[E], where R is the field of reals; therefore, it is easier to avoid considering negative powers of E.
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Show that g is increasing for x > 0.
Source: The problem is given as Exercise 6 on p. 114 in Walter Rudin, Principles of

Mathematical Analysis, third edition, McGraw Hill, New York 1976.
Solution: We have

g′(x) =
(
f(x)
x

)′
=
f ′(x)x− f(x)

x2
.

It will be sufficient to show that g′(x) ≥ 0, i.e., that f(x) ≤ f ′(x)x, holds for x > 0. This
inequality indeed holds, since we have

f(x) = f(x)− f(0) = f ′(ξ)(x− 0) = f(ξ)x ≤ f ′(x)x

for some ξ with 0 < ξ < x, the Mean-Value Theorem of differentiation justifying the second
equality; the inequality here holds in view of the assumption that f ′ is increasing.

4) How many subsets not containing consecutive integres does the set {1, 2, 3, 4, 5, 6, 7, 8,
9, 10} have. Include the empty set in your count. (Two integers are called consecutive if
their difference is 1.)

Source: The problem is related to a well-known fact about the Lucas numbers, defined
by L1 = 1, L2 = 3, and Ln = Ln−1 + Ln−2 for n ≥ 2. The details are given below.

Solution: Write [1, n] for the set {1, 2, . . . , n}, and write Cn for the number of subsets
of [1, n] not containing consecutive integers. We have C1 = 2; indeed, the subsets of
[1, 1] = {1} that qualify are the empty sets and the set {1}. It is also easy to see that
C2 = 3; indeed, the subsets of [1, 2] that qualify are the empty set, the set {1}, and the
set {2}.

Further, it is easy to see that Cn = Cn−1 + Cn−2 for n ≥ 2. Indeed, given an integer
n ≥ 2 and a set X ⊂ [1, n] such that X does not contain consecutive integers, then either
n /∈ X, in which case X ⊂ [1, n − 1], or n ∈ X, in which case X \ {n} ⊂ [1, n − 2].
The number of sets X satisfying the former condition is Cn−1, and the number of those
satisfying the latter condition is the same as the number of diffrent sets X \{n}, i.e., Cn−2.
Thus, indeed, Cn = Cn−1 + Cn−2, as claimed.

Using these observations, we have C3 = C1 +C2 = 2+3 = 5, C4 = C2 +C3 = 3+5 = 8,
C5 = C3 + C4 = 5 + 8 = 13, C6 = C4 + C5 = 8 + 13 = 21, C7 = C5 + C6 = 13 + 21 = 34,
C8 = C6+C7 = 21+34 = 55, C9 = C7+C8 = 34+55 = 89, C10 = C8+C9 = 55+89 = 144.
That is, there are 144 subsets satisfying the requirements.

The following related problem leads to the well-known Lucas numbers (see below).
Modify the above question as follows:

How many subsets not containing cyclically consecutive integres does the set [1, n] have.
if the numbers 1 and n are also considered consecutive. Include the empty set in your count.
(For n = 1 this means that 1 is consecutive to itself,

Writing Ln for the number of subsets as described, it is easy to see that Ln = Cn−Cn−4

for n ≥ 5. Indeed, from the set of subsets of [1, n] considered before (i.e., those subsets
not containing consecutive integers, with 1 and n not counted as consecutive unless n = 2)
we now have to discard those sets X that contain both 1 and n. In this case X \ {1, n} is

3



a subset of the interval [3, n − 2] not containing two consecutive integers; the number of
these is Cn−4, verifying the above formula. This formula can be extended also to n = 1,
2,, 3, 4 by taking C−3 = 1, C−2 = 0, C−1 = 1, and C0 = 1. Indeed, when counting the
subsets of [1, n] for n = 1, 2, 3, 4, we have to discard the set {1} in case n = 1 (this is
because, somewhat unnaturally, in this case 1 is considered consecutive to itself), in case
n = 2 no subset needs to be discarded, in cae n = 3 the set {1, 3} needs to be discarded,
and in case n = 4 the set {1, 4} needs to be discarded.

Note that the relation Cn = Cn−1 + Cn−2, established for n ≥ 3, now extends to the
values of n = −1, 0, 1, and 2 as well. Thus, for n ≥ 3 we have Ln = Cn − Cn−4 =
(Cn−1 +Cn−2)− (Cn−5 +Cn−6) = (Cn−1 −Cn−5) + (Cn−2 −Cn−6) = Ln−1 + Ln−2, i.,e,

Ln = Ln−1 + Ln−2.

This recursive relation together with the initial values L1 = 1 and L2 = 3 defines the Lucas
numbers. See

http://mathworld.wolfram.com/LucasNumber.html

5) Given an arbitrary quadrilateral, erect a square looking outward on each side. The
centers of these squares form a new quadrilateral. Show that the diagonals of this new
quadrilateral are perpendicular and have the same length.

Hint. A proof using complex numbers is probably simpler than a direct geometric proof.
Source: The problem is given as Problem 2 on p. 54 in Tibor Szele, Bevezetés az Al-

gebrába (Introduction to Algebra. In Hungarian), third edition Tankönyvkiadó, Budapest
(Hungary), 1963.

Solution: Let the complex numbers a1, a2, a3, and a4 represent the vertices of the
given quadrilateral, going around counterclockwise. To simplify the calculation, define an
for every integer n (positive, negative, or zero) by putting an = ak if n ≡ i mod 4 (k = 1,
2, 3, or 4). For the vertex bn of the new quadrilateral that is the center of the square
erected over the side connecting an and an+1 we have

bn = an+1 + (an − an+1)
1 + i

2
= an

1 + i

2
+ an+1

1− i
2

,

where i =
√
−1. For the diagonal vector bn+2 − bn of the new quadrilateral we have

bn+2 − bn = (an+2 − an)
1 + i

2
+ (an+3 − an+1)

1− i
2

.

Replacing n with n+ 1 here, we obtain the expression for the other diagonal, that is, the
diagonal vector bn+3 − bn+1:

bn+3 − bn+1 = (an+3 − an+1)
1 + i

2
+ (an+4 − an+2)

1− i
2

= (an+3 − an+1)
1 + i

2
+ (an+2 − an)

−1 + i

2
,

4



where the second equation was obtained by noting that an+4 = an. Comparing the right-
hand sides of the last two displayed equations, it is clear that (bn+2 − bn)i = bn+3 − bn+1,
showing that the vectors bn+2−bn and bn+3−bn+1 have equal length and are perpendicular,
as claimed.

6) Let α, β, and γ be the angles of a triangle. Show that

cosα+ cosβ + cos γ < 2.

Source: Problem 170 on p. 340 in Emil Molnár, Matematikai Versenyfeladatok Gyüjte-
ménye, 1947–1970 (Collection of Competition Problems in Mathematics, 1947–1970. In
Hungarian), Tankönyvkiadó, Budapest (Hungary), 1974.

Solution: We are going to prove the stronger inequality that

(1) cosα+ cosβ + cos γ ≤ 3/2,

with equality holding only in case α = β = γ = π/3. First, if α > 2π/3 then the inequality
is clearly true, since then cosα < −1/2, and so

cosα+ cosβ + cos γ < −1/2 + 1 + 1 = 3/2.

So we may assume that 0 < α ≤ 2π/3, 0 < β ≤ 2π/3, and 0 < γ ≤ 2π/3. Note that for an
x with 0 ≤ x ≤ 2π/3 we have

(2) cosx− cos
π

3
≤ −

(
x− π

3

)
sin

π

3
;

with equality holding only in case x = π/3. This inequality simply says that the graph of
cosx is below the tangent line at π/3 in the interval (0, 2π/3). This is obvious by inspecting
the graph of cosx. We will verify this inequality formally below, but first we point out
how to derive (1) with the aid of this inequality. Using this inequality with α, β, and γ
replacing x, and observing that cosπ/3 = 1/2, we have

cosα+ cosβ + cos γ − 3
2

=
(

cosα− cos
π

3

)
+
(

cosβ − cos
π

3

)
+
(

cos γ − cos
π

3

)
≤ −

(
α− π

3

)
sin

π

3
−
(
β − π

3

)
sin

π

3
−
(
γ − π

3

)
sin

π

3
= −(α+ β + γ − π) sin

π

3
= 0;

the inequality here follows according to (2), and the last equality follows since we have
α+ β + γ = π for the angles of a triangle.

To establish inequality (2), consider the function

f(x) = cosx− cos
π

3
+
(
x− π

3

)
sin

π

3
;
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We have
f ′(x) = sin

π

3
− sinx.

In the interval (0, π/3) we have f ′(x) > 0, so f is increasing in this interval. In the interval
(π/3, 2π/3) we have f ′(x) < 0, so f is decreasing there. Hence f assumes its maximum
in the interval [0, 2π/3] at x = π/3 (the endpoints of the interval can be included in view
of the continuity of f). At x = π/3 we have f(x) = 0; so, everywhere else in the interval
[0, 2π/3] we have f(x) < 0. This establishes inequality (2).

Note. The above solution exploited the concavity of the function y = cosx.2 Convexity
and concavity is frequently exploited in mathematics. Jensen’s remarkable inequality is
based on convexity, and is discussed in many advanced texts on mathematical analysis.
See e.g. A. Zygmund, Trigonometric Series, Vol. I and II, Second Edition, Cambridge
University Press, London–New York–Melbourne, 1959 and 1977, pp. 21–26.

In the above argument, we had to go somewhat beyond the simple concavity of the
function y = cosx in that we had to establish inequality (2) beyond the range of concavity.

There are various other proofs of inequality (2) that, using some ingenuity, avoid the
differential calculus needed in establishing (2); these proofs, however, do not highlight the
key role played by convexity in the result.

7) Let a and b be positive integers. Show that there can only be finitely many positive
integers n for which both an2 + b and a(n+ 1)2 + b are squares of integers.

Source: Problem 2 on p. 8 in János Surány (editor), Matematikai Versenytélek, IV.
rész (Competition Problems in Mathematics, Part IV. In Hungarian), TypoTEX, Budapest
(Hungary), 1998.

Solution: Assume, on the contrary, that

(1) k2(n) = an2 + b and l2(n) = a(n+ 1)2 + b

hold for n ∈ S, where S is an infinite set of positive integers, and k(n) and l(n) are positive
integers; of course, k2(n) abbreviates

(
k(n)

)2; similarly for l2(n). We have

lim
n→∞
n∈S

(
l(n)− k(n)

)
= lim
n→∞
n∈S

l2(n)− k2(n)
l(n) + k(n)

= lim
n→∞
n∈S

a(2n+ 1)√
a(n+ 1)2 + b+

√
an2 + b

= lim
n→∞
n∈S

2a+ a
2n√

a
(
1 + 1

n

)2 + b
n2 +

√
a+ b

n2

=
2a√
a+
√
a

=
√
a.

The sequence of the left-hand side assumes only integer values. For it to have a limit, it
must be eventually constant. That is, we have

l(n)− k(n) =
√
a

2A function that is concave downward is called concave, and a function that is concave upward is called
convex. The designations concave upward and concave downward are not commonly used in mathematics

outside introductory calculus courses.
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for large enough n ∈ S. This means that
√
a must be an integer; write a = c2, where c is

a positive integer.
We have k2(n) = (cn)2 + b for every n ∈ S according to (1); hence k(n) ≥ cn + 1, as

b > 0. That is, we have

k2(n) = (cn)2 + b ≥ (cn+ 1)2 = (cn)2 + 2cn+ 1,

for n ∈ S. i.e.,
b ≥ 2cn+ 1,

or else

(2,) n ≤ b− 1
2c

for n ∈ S. This inequality shows that the set S is finite. This contradicts our assumption
that S is infinite. This contradiction proves the assertion that (1) can hold only for finitely
many values of n.

Note. We need to invoke a contradiction, and cannot directly say that this inequality
accomplishes the proof that S is finite. Namely, this inequality depends on the statement√
a is an integer, and that statement depends on the assumption that S is infinite. Thus,

this inequality, being hypothetical rather than describing the actual state of affairs, does
not in itself show anything. In particular, if (1) holds only for finitely many integers n,
the inequality

n ≤ b− 1
2
√
a
,

identical to (2) if we write
√
a (which need not be an integer now) instead of c, need not

be satisfied for such n.

Soon after the exam, solutions will appear on the Web site

http://www.sci.brooklyn.cuny.edu/~mate/prize05/index.html

7


