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The source for each problem is listed below when available; but even when the source is given,
the formulation of the problem may have been changed. Solutions for the problems presented here
were obtained without consulting sources for these solutions even when available, and additional
information on how to solve these problems might be obtained by consulting the original sources.
There was some overlap between the problems on the Junior and Senior prize exams; the problems
common to both exams are listed only once.

1) (JUNIOR 1 and SENIOR 1) Given a positive integer n, show that 10n3 + 3n2−n is divisible
by 6.

Source: Középiskolai Mathematikai Lapok (The Hungarian Mathematics Journal for High
Schools), Problem 79 (1925/10). See

http://www.sulinet.hu/komal/
Proposed by Ferenc Kárteszi. In Hungarian. The Web site also provides also has an English
translation, see

http://www.komal.hu/info/bemutatkozas.e.shtml
Solution: We have

10n3 + 3n2 − n = 2(5n3 + n2) + n(n− 1);

since either n or n− 1 is divisible by 2, the left-hand side also must be divisible by 2. Further, we
have

10n3 + 3n2 − n = 3(3n3 + n2) + n(n− 1)(n+ 1);

since one of n, n − 1, and n + 1 is divisible by 3, the left-hand side must be divisible by 3. Thus
10n3 + 3n2 − n is divisible by both 2 and 3, and so it is divisible by 6.

2) (JUNIOR 2 and SENIOR 2) A function f defined on the interval [0, 1] satisfies f(0) = f(1)
and is such that for any x and y with and 0 ≤ x < y ≤ 1 we have

|f(y)− f(x)| < y − x.

Show that we have

|f(x)− f(y)| < 1
2

whenever 0 ≤ x < y ≤ 1.
Source: Chinese Mathematical Olympiad, 1983/1. See

http://www.problemcorner.org
Solution: Extend the function f to the interval [1, 2] by putting f(x+ 1) = f(x) for x ∈ (0, 1].

Observe that the inequality
|f(y)− f(x)| < y − x

remains valid whenever 0 ≤ x < y ≤ 2. In fact, this is already known if 0 ≤ x < y ≤ 1, and the
case when 1 ≤ x < y ≤ 2 is immediate. Finally, in case 0 ≤ x < 1 < y ≤ 2 we have

|f(y)− f(x)| ≤ |f(y)− f(1)|+ |f(1)− f(x)| < (y − 1) + (1− x) = y − x.
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Now, given x, y with 0 ≤ x < y ≤ 1 we have either y − x ≤ 1/2 or (x + 1) − y ≤ 1/2. In the
former case we have

|f(y)− f(x)| < y − x ≤ 1
2
,

and in the latter case we have

|f(y)− f(x)| = |f(x+ 1)− f(y)| < (x+ 1)− y ≤ 1
2
.

This completes the proof.

3) (JUNIOR 3 and SENIOR 3) Given 5 points in a square with side a, show that two of them
are within a distance of at most a/

√
2 of each other.

Source: Problem 9 Delta 6.1-3, proposed by Anthony Biagioli. See
http://www.problemcorner.org

Solution: Divide the square into four smaller squares by drawing two lines parallel to the sides
through the center of the square. Out of the five points, at least two must fall into (i.e., inside
or on the boundary of) one of these smaller squares. The distance of these two points cannot be
greater than the length of the diagonal of this smaller square, that is a/

√
2.

4) (JUNIOR 4) Given numbers x1, x2, . . . xn, xn+1 such that xn+1 = x1, xi is +1 or −1 for
each i with 1 ≤ i ≤ n+ 1, and

n∑
i=1

xixi+1 = 0,

show that n is divisible by 4.
Source: Sándor Róka, 2000 feladat an elemi matematika köréből (2000 problems in elementary

mathematics), Typotex, Budapest (Hungary), 2000, ISBN 963 9132-50-0, Problem 1737, p. 151,
Solution: The product xixi+1 is either +1 or −1; to get zero as the sum of these products, each

of these values must occur exactly n/2 times (so n is certainly even). When xixi+1 = 1, we have
xi+1 = xi. When xixi+1 = −1, we have xi+1 = xi + 2 or xi+1 = xi − 2. As xn+1 = x1, we must
have xi+1 = xi + 2 exactly as many times as xi+1 = xi − 2; that is, each of these possibilities must
occur n/4 times. So n/4 must be an integer.

5) (JUNIOR 5) Show that
n∑
i=1

1
i

= 1 +
1
2

+ . . .+
1
n

is not an integer for any integer n ≥ 2.
Source: Brazilian Mathematical Olympiad, 1983/3. See

http://www.problemcorner.org
(however, the problem has a much earlier history).
Solution: We have

(1)
n∑
i=1

1
i

=
∑n
i=1

n!
i

n!
,

where n! =
∏n
i=1 i = 1 · 2 · . . . · n. In the fraction displayed on the right-hand side, both the

numerator and the denominator are integers. We will show that the denominator is divisible by
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a higher power of 2 than the numerator; this will immediately imply that the fraction is not an
integer (since the denominator is then not a divisor of the numerator).

To this end, let k be the integer such that n < 2k+1 ≤ 2n, in which case
n

2
< 2k ≤ n.

It is easy to see that no integer i with 1 ≤ i ≤ n other than 2k is divisible by 2k; therefore, for each
i with 1 ≤ i ≤ n and i 6= 2k, the integer n!/i is divisible by a higher power of 2 than n!/2k. That
is, for integers x, y ≥ 0 writing 2x ‖ y to mean that y is divisible by 2x (in symbols: 2x | y) and y
is not divisible by 2x+1 (in symbols: 2x+1

- y), let the positive integer l be such that

2l ‖ n!
2k
.

Then 2l+1 | n!/i for each i with 1 ≤ i ≤ n and i 6= 2k. Then

2l+1
-

n∑
i=1

n!
i

(since every term on the right-hand side except the one corresponding to i = 2k is divisible by
2l+1). On the other hand, n! is certainly divisible by 2l+1 (in fact, clearly, 2l+k ‖ n!, and k ≥ 1 in
view of n ≥ 2). Hence the fraction on the right-hand side of (1) cannot be an integer.

6) (JUNIOR 6) Suppose f(x) and g(x) are nonzero real polynomials satisfying

f(x2 + x+ 1) = g(x)f(x).

Show that f(x) has even degree.
Source: Mathematics Magazine 60(1987)40
Solution: Assume f has odd degree. Then f must has at least one real zero (this is because of

the Intermediate-Value Theorem, since f(x) will have different signs when x→ −∞ and x→ +∞).
Let α be its largest real zero. Then, in view of the equation

f(x2 + x+ 1) = g(x)f(x)

α2 + α+ 1 is also a zero of f . This is, however, a contradiction since α2 + α+ 1 > α.

7) (JUNIOR 7) In the complex numbers, the polynomial x2+y2 can be factored as (x+iy)(x−iy).
Show that the polynomial x2 + y2 + z2 cannot be written as a product

(ax+ by + cz)(Ax+By + Cz),

where a, b, c, and A, B, C are complex numbers.

Source. Journal: The AMATYC Review, 63. AMATYC N-3 by Stanley Rabinowitz. See
Publisher: American Mathematical Association of Two-Year Colleges
volume(year)page references:
Proposal: 9(1988/2)71 by Stanley Rabinowitz
Solution: 10(1989/2)68 by Stephen Plett, Joseph Wiener, Stanley
Rabinowitz
Additional solvers listed: 11(1989/1)75
Title: Factoring Sums of Squares
See

http://www.problemcorner.org
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Solution. Assuming

x2 + y2 + z2 = (ax+ by + cz)(Ax+By + Cz),

we have, for example,

Aa = 1, Bb = 1, aC +Ac = 0, and bC +Bc = 0.

Multiplying the third equation by a and the fourth one by b and using the first and second equations,
we obtain

a2C + c = 0 and b2C + c = 0.

Thus a2 = b2 (since C 6= 0, as Cc = 1 by an equation similar to the ones stated above). Using
similar arguments, we can show that a2 = b2 = c2 and A2 = B2 = C2. Multiplying a, b, c by a−1/2

and A, B, C by a1/2, we may assume that a2 = b2 = c2 = A2 = B2 = C2 = 1. Then the equation
a2C + c = 0 above implies C = −c. Similarly, A = −a, and B = −b.

Hence, the equation aC +Ac = 0 becomes −2ac = 0. This is, however, impossible, since neither
a nor c is zero, because Aa = 1 (as stated above) and (similarly) Cc = 1.

Note. One might imagine that x2 + y2 + z2 is the product of more than two linear factors if x, y,
z each occur in exactly two of these factors. But, in fact, even this cannot happen:

The polynomial x2 + y2 + z2 does not factor as the product of two or more linear factors.

Indeed, assuming that such a factorization exist, we would have the equation

x2 + y2 + z2 = (x− P (y, z))(xR(y, z)−Q(y, z)),

where P (y, z) and Q(y, z) and R(y, z) are polynomials of y and z. To get this factorization, in the
factorization into linear factors, we can take two linear factors containing x, and multiplying the
remaining factors into the second one of these (which will imply that P (y, z) must be linear, but
this is of no importance at this point). Multiplying out the right-hand side, and considering the
two sides as polynomials of x only, the coefficients of x must agree, so we must have R(y, z) = 1
for all values of y and z, so we must have R(y, z) ≡ 1, where the sign ≡ here means that the two
sides agree as polynomials (i.e., they have the same coefficients).1

Noting that R(y, z) ≡ 1 and multiplying out the right-hand side in the above equation, we have

x2 + y2 + z2 = x2 − (P (y, z) +Q(y, z))x+ P (y, z)Q(y, z).

For this equation to be true for a all x, the coefficients of x and y must agree, and so we must have

P (y, z) +Q(y, z) = 0 and P (y, z)Q(y, z) = y2 + z2.

1In showing that R(y, z) = 1, we can consider R(y, z) as the polynomial only of y and show that all coefficients

of this polynomial must be zero except for the constant term.

A similar argument can be used to show that x cannot occur in more than two factors of the product. Indeed,
if x occurred in more than two factors, then, after multiplying out and considering the result as a polynomial of x

only, the coefficient of the highest power of x in the product will have to be zero. This coefficient is, however, the
product of all the factors not containing x. So the product of all the factors not containing x must be zero, which

means that the whole product must be zero.
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This equation can easily be solved for P (y, z) and Q(y, z):

P (y, z) = ±
√
y2 + z2 and Q(y, z) = ∓

√
y2 + z2.

These equations, however, cannot hold. The simplest reason for this is that the partial derivatives
of P (y, z) and Q(y, z) exist at every point, since they are polynomials, while the partial derivatives
of
√
x2 + y2 do not exist at the point x = 0, y = 0.

For this last argument, to avoid having to do with a function of two complex variables, one can
consider y and z real variables. Indeed, if the above equations cannot hold with real variables y
and z, they cannot hold with complex variables y and z, a fortiori.2

8) (SENIOR 4) Show that the improper integral∫ +∞

2

(x−
√
bx2c)2 dx

is convergent (btc denotes the integer part of, that is, the largest integer not greater than, the real
number t).

Source: Adapted from Problem 284 proposed by Gary Walls in College Mathematics Journal;
see http://www.problemcorner.org

Solution: According to the Mean-Value Theorem of Differentiation, given real numbers a and
b with a < b and a function f that is continuous on [a, b] and differentiable on (a, b), we have

f(b)− f(a) = f ′(ξ)(b− a)

with some ξ ∈ (a, b). Let x ≥ 2 be such that x2 is not an integer. Using the Mean-Value Theorem
with a = bx2c, b = x2, and f(t) =

√
t, we find that there is a ξ with bx2c < ξ < x2 such that

x−
√
bx2c =

√
x2 −

√
bx2c =

1
2
√
ξ

(x2 − bx2c).

Since ξ > bx2c > x2 − 1 ≥ (x − 1)2, we have
√
ξ > x − 1; further, clearly x2 − bx2c < 1 holds; so

the right-hand side above is less than 1/(2(x− 1)). Thus

x−
√
bx2c < 1

2(x− 1)
.

We derived this inequality under the assumption that x2 is not an integer (and x ≥ 2); but it is
obviously true even when x2 is an integer (since the left-hand side is 0 then). Hence the improper
integral in question is dominated by the convergent integral∫ +∞

2

1
4(x− 1)2

dx,

showing that the former improper integral is indeed convergent.

9) (SENIOR 5) In the triangle ABC with circumcenter O (i.e., O is the center of the circle going
through the vertices of the triangle ABC) we have AB = AC, D is the midpoint of the side AB,
and E is the centroid of the triangle ACD (the centroid of the triangle is the common intersection
of each of three lines connecting a vertex with the midpoint of the opposite side). Prove that OE
is perpendicular to CD.

2A fortiori is new Latin meaning “for a still stronger reason,” a phrase frequently used in mathematical writing.
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Hint. An algebraic solution using complex numbers works well.
Source: British Mathematical Olympiad, Problem 18. Britain 1983/1. See

http://www.problemcorner.org
Solution: In setting up a solution using complex numbers, let the points A, B, C, D, E, O,

be represented by the complex numbers a, b, c, d, e, 0, (the last one is the number zero). The
assumption that O is the center of the circle going through the points A, B, and C then means that
|a| = |b| = |c|. There is no harm in assuming that a = −1, in which case the equality AB = AC
means that B and C are reflections of each other about the real line, i.e., that c = ā (the bar means
complex conjugate). Since |b| = |c| = |a| = 1, this means that bc = 1. We have

d =
a+ b

2
and e =

a+ c+ d

3
=
a+ c+ a+b

2

3
=

3a+ b+ 2c
6

The vector from the point C to the point D is the position vector of the complex number

d− c =
a+ b

2
− c =

a+ b− 2c
2

(the position vector of a complex number is the vector from the origin to the point represented
by the complex number). It is sufficient to prove that the position vectors of 6d and 2(c − d) are
perpendicular, or that the position vectors of 6d · b and 2(c− d) · b are perpendicular (multiplying
by a real number does not change the direction of a vector, and multiplying each vector by the
complex number b turns each vector by the same angle). Noting that a = −1 and bc = 1, we have

6ad = b2 − 3b+ 2 = (b− 1)(b− 2) and 2(c− 3) = b2 − b− 2 = (b+ 1)(b− 2).

In showing that the position vectors of these two complex numbers are perpendicular, we can divide
by the common factor b− 2 (which is not zero, since |b| = 1), since this turns both position vectors
by the same amounts. That is, we need to show that the position vectors of of the complex numbers
b− 1 and b+ 1 are perpendicular. To show this, we need to verify that the fraction

b− 1
b+ 1

=
(b− 1)(b̄+ 1)
(b+ 1)(b̄+ 1)

is imaginary. The denominator here is of course real (since it is the product of a complex number
and its conjugate). As for the numerator, it equals

bb̄+ b− b̄− 1 = 1 + b− b̄− 1 = b− b̄,

and this is clearly imaginary, showing that the fraction itself is also imaginary. This completes the
proof.

10) (SENIOR 6) Show that in a convex polyhedron there are always two faces with the same
number of sides.

Source: Középiskolai Mathematikai Lapok (The Hungarian Mathematics Journal for High
Schools), Problem F. 2484 (1984). See

http://www.sulinet.hu/cgi-bin/db2www/lm/komal/feladat?id=53884&l=
In Hungarian. The Web site also provides also has an English translation, see

http://www.komal.hu/info/bemutatkozas.e.shtml
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Solution: Write E for the number of edges, F for the number of faces, and V for the number
of vertices of the polyhedron. Assume that the i face (1 ≤ i ≤ F ) of the polyhedron has si sides.
Then

(1) 2E =
F∑
i=1

si.

This is because the right-hand side adds up the number of vertices adjacent to any face; since an
edge is adjacent to exactly two faces, this sum gives 2E. Further, we have

(2) 3V ≤
F∑
i=1

si.

This is because the right-hand side also adds up the number of vertices adjacent to any face, and
each vertex is adjacent to at least three faces (so the sum counts each vertex at least three times).
Finally, if no two faces have the same number of sides then, numbering the faces in a way that the
number of sides si of the ith face form an increasing sequence, we must have

3 ≤ s1 < s2 < . . . < sF ,

and so si ≥ 2 + i for each i. Hence

(3)
F∑
i=1

si ≥
F∑
i=1

(i+ 2) = 2F +
F (F + 1)

2
=
F 2 + 5F

2
.

According to Euler’s formula we have V + F − E = 2, and so, using (1), (2), and (3), we have

2 = V + F − E ≤ 1
3

F∑
i=1

si + F − 1
2

F∑
i=1

si = F − 1
6

F∑
i=1

si ≤ F −
F 2 + 5F

12
= −F

2 − 7F
12

.

Comparing the extreme members here gives the inequality

F 2 − 7F + 24 ≤ 0.

No real number F satisfies this inequality. Hence a polyhedron in which there are no two faces
with the same number of sides cannot exist.

11) (SENIOR 7) Let f(x) be a function that is differentiable infinitely many times in (−∞,∞).
Assume that f (n)(0) = 0 and f (n)(x) ≥ 0 for every integer n ≥ 0 and every real x ≥ 0. (f (n)(x)
denotes the nth derivative of f . The zeroth derivative f (0)(x) is, of course, f(x) itself.) Show that
f(x) = 0 for every x > 0.

Note. Observe that the first condition f (n)(0) = 0 for every integer n ≥ 0 is not enough the ensure
the validity of the conclusion without the second condition. This is shown by the function

f(x) =
{
e−1/x2

if x 6= 0,
0 if x = 0.
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For this function, we have f (n)(0) = 0 for every integer n ≥ 0, but the second condition fails: for
example, f ′(1) = −2e and f ′′(1) = 10e.

Source: This was probably known to S. N. Bernstein, but I have no sources.
Solution: We claim that, for all nonnegative integers n and K, and every positive real x, we

have

(1) Kf (n)(x) ≤ xf (n+1)(x).

This implies that f(x) = 0 for all x > 0, as we are about to show now. Consider this inequality
with n = 1, in which case it says that

(2) Kf(x) ≤ xf ′(x).

Noting that both f and f ′ are nondecreasing (since their derivatives are nonnegative), and so we
must have f(x) ≥ 0 and f ′(x) ≥ 0 for any x > 0. We want to prove that f(x) = 0. If this is not
the case for a fixed x > 0, then let K be a positive integer such that

K >
xf ′(x)
f(x)

.

For such a K, (2) must fail; this is a contradiction, showing that f(x) = 0. Since x > 0 is arbitrary
here, the conclusion that f(x) = 0 for all x > 0 follows.

In order to establish (1), we will use induction on K. For K = 0, (1) just says that xf (n+1)(x) ≥
0; this holds since we assumed that f (n+1)(x) is nonnegative. Assume that (1) holds with a certain
nonnegative integer K for all n ≥ 0 and all x > 0. Then we have

Kf (n)(x) =
∫ x

0

Kf (n+1)(t) dt ≤
∫ x

0

tf (n+2)(t) dt = xf (n+1)(x)−
∫ x

0

f (n+1)(t) dt

= xf (n+1)(x)− f (n)(x);

here the inequality holds according to (1) with t replacing x and n + 1 replacing n; the second
equality was obtained via integration by parts. Rearranging this inequality, we obtain

(K + 1)f (n)(x) ≤ xf (n+1)(x);

i.e., (1) holds with K + 1 replacing K. This completes the induction step in the proof of (1).
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