
All Problems on Prize Exam

Spring 2009

Version Date: Mon Jan 12 13:47:46 EST 2009

The source for each problem is listed below when available; but even when the source is given,
the formulation of the problem may have been changed. Solutions for the problems presented here
were obtained without consulting sources for these solutions even when available, and additional
information on how to solve these problems might be obtained by consulting the original sources.
There was some overlap between the problems on the Junior and Senior prize exams; the problems
common to both exams are listed only once.

1) (JUNIOR 1 and SENIOR 1) Show that the greatest number of lines that can be drawn in the
plane in such a way that each line intersects exactly four of the other lines is eight.

Source: Norwegian Mathematical Olympiad, 1994
http://abelkonkurransen.no/problems.php?lan=en

Problem 19. Direct link: http://abelkonkurransen.no/problems/abel_9394_r1_prob_en.pdf

Solution: To get eight lines with this property, take four parallel lines in the plane, and then
take four lines that are perpendicular to these.

To show that nine lines cannot have this property, assume we are given nine lines in the plane
such that each intersects exactly four of the others. Take one of the lines; since this line only
intersects four of the other lines, there must be four other lines parallel to it. If you take one of
the lines that is not parallel to it, then this latter line will intersect all five of these parallel lines,
showing that the required property is not fulfilled.

2) (JUNIOR 2 and SENIOR 2) Given four whole numbers a, b, c, and d, show that the product
of the six differences a − b, a − c, a − d, b − c, b − d, c − d is divisible by 12.

Source: József Kürschák High School Mathematics Competition (Kürschák József Matematikai
Tanuló Verseny), Hungary,

http://matek.fazekas.hu/list.php?what=competition

1925, first problem. Direct link (in Hungarian):
http://matek.fazekas.hu/show.php?problem=2747&setting=m

Solution: Write P for the product. We need to show that P is divisible both by 3 and 4. As
for divisibility by 3, at least two of the four numbers a, b, c, d must give the same remainder when
divided by 3 (since there are only three available remainders: 0, 1, 2); their difference is divisible
by 3.

As for divisibility by 4, there are two cases. First, there are three among the four numbers, say
a, b, and c, that give the same remainder when divided by 2. Then each of the differences a − b,
a − c, b − c is divisible by 2, so P is divisible by 8 in this case. Second, two of the numbers, say a
and b, give remainder 0 when divided by 2, and the other two, c and d, give remainder 1. In this
case a− b and c− d are both divisible by 2, so P is again divisible by 4. This completes the proof.

3) (JUNIOR 3 and SENIOR 3) Color the points of the plane by two colors, say red and blue.
Show that there will be two points of the same color exactly at one unit distance from each other.

Source:

http://in.answers.yahoo.com/question/index?qid=20080125180827AAHtCUU

All computer processing for this manuscript was done under Fedora Linux. AMS-TEX was
used for typesetting.
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Solution: Assume the assertion is not true. Pick an arbitrary point that is colored, say, blue.
Then all points on the circumference of the circle of radius 1 with this point as its center must be
colored red. Among these, there will be two exactly one unit distance apart.

4) (JUNIOR 4) Consider the regular decagon (10-sided polygon) inscribed into a circle, and
consider a diagonal skipping two vertices of this decagon. Show that the difference between the
length of this diagonal and the length of a side of the regular decagon equals the radius of the
circle.

Source: József Kürschák High School Mathematics Competition (Kürschák József Matematikai
Tanuló Verseny), Hungary,

http://matek.fazekas.hu/list.php?what=competition

1908, third problem. Direct link (in Hungarian):
http://matek.fazekas.hu/show.php?problem=2707&setting=m

Solution: While the result is not difficult to establish directly by using geometry, here we show
a way of using complex roots of unity to obtain the result. Put1

ζ = e2πi/10 = cos
2π

10
+ i sin

2π

10
.

Put the vertices of the regular decagon inscribed in the unit circle |z| = 1 at at 1 ζ, ζ2, ζ3, ζ4, ζ4,
ζ6, ζ7, ζ8, ζ9. One of the sides of this decagon connects the vertices ζ3 and ζ2, and the length of
this side is |ζ2− ζ3| = ζ2− ζ3. Equality here holds because ζ2− ζ3 is in fact a positive real number.
It is easy to see this from a picture, but one can also verify this by calculation as follows.

For a complex number z, write z̄ for its conjugate; we have zz̄ = |z|2. Now |ζ| = 1 and so ζ̄ = ζ−1.

We have ζ5 = −1 and ζ10 = 1, and so −ζ3 = ζ5 · ζ3 = ζ8 = ζ−2ζ10 = ζ−2 = (ζ−1)2 = ζ̄2 = ζ2.

Hence ζ2 − ζ3 = ζ2 + ζ2 = 2ℜζ2, where ℜz = (z + z̄)/2 indicates the real part of the complex
number z. Hence ζ2−ζ3 is indeed real; the reason ℜζ2 is positive is that ζ2 is in the first quadrant.

A diagonal skipping two vertices connects the points ζ4 and ζ. Its length is |ζ − ζ4| = ζ − ζ4.
Equality again holds since ζ−ζ4 is a positive real number. Indeed, −ζ4 = ζ5 ·ζ4 = ζ9 = ζ−1 ·ζ10 =
ζ−1 = ζ̄, and so ζ − ζ4 = ζ + ζ̄ = 2ℜζ; again, ℜζ > 0 since ζ is in the first quadrant.

Thus, in order to show that the difference between the length of the diagonal in question and
that of a side equals 1 (the radius of the unit circle), we have to show that

(1) (ζ − ζ4) − (ζ2 − ζ3) = 1.

i.e., that
−ζ4 + ζ3 − ζ2 + ζ − 1 = 0.

Noting that ζ5 = −1, we have −ζ4 = ζ5 · ζ4 = ζ9, −ζ2 = ζ5 · ζ2 = ζ7, so this equation becomes
ζ9 + ζ7 + ζ5 + ζ3 + ζ = 0, or else ζ(ζ8 + ζ6 + ζ4 + ζ2 + 1) = 0. As ζ 6= 0, we can divide both sides
by ζ:

ζ8 + ζ6 + ζ4 + ζ2 + 1 = 0.

To verify this, we may multiply both sides by ζ2 − 1, since ζ2 − 1 6= 0. We obtain

ζ10 − 1 = 0.

1Those not familiar with complex exponents may simply ignore the expression e2π/10 and only read the trigono-
metric expression following it; this represents a point in the unit circle that results by dividing the unit circle into 10
equal parts. The fraction 2π/10 can be reduced, at the price of clarity, though, since this way of writing it indicates
that the circle is divided into 10 parts.
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This being true, it follows that the earlier equations, and, in particular, equation (1), are also true.
Note. Here is an outline of a solution using elementary geometry. Let A, B, C, D, E, and F be

six consecutive vertices of a regular decagon, inscribed into a circle with center O. The lines BE
and CF intersect on the radius OD, for reasons of symmetry. Let G be the point of intersection.
Also for reasons of symmetry, the opposite sides of the quadrilateral CDEG are parallel, so CDEG
is a parallelogram. By a similar argument, ABGO is also a parallelogram. Therefore,

BE − CD = BE − GE = BG = AO,

which is what we wanted to prove.

5) (JUNIOR 5) A society created to help the police contains exactly 100 persons. Every evening
three persons are on duty. Prove that one cannot organize duties in such a way that every couple
will meet on duty exactly once (during a certain time period).

Source: The All-Soviet-Union mathemtics competitions, 1961-1987,
http://www.mathprocess.com/archive/RusMath.txt

Problem 061
Solution: Let the persons be numbered 0, 1, 2, . . . , 99. Person 0 must meet each of persons 1,

2, . . . 99. Since on each team, person 0 can meet only two other persons, there must be at least
50 teams containing person 0 so he/she can meet the other 99 persons. But then, there is a person
among persons 1, 2, . . . , 99 that is on at least two of these teams. Person 0 will then meet this
person twice.

6) (JUNIOR 6) Find a function f(x) defined for x > 1 such that

∫ x2

x

f(t) dt = 1

for all x > 1.
Source: 101 Mathematical Problems, complied by Yang Wang, second problem set,

http://www.math.gatech.edu/~wang/Putnam/second100.pdf

Problem 83.
Solution: We will not try to determine all functions satisfying the conditions; in fact, we will

impose additional conditions on f to make such an f easier to find. First, we assume that f is
continuous on (1, +∞), so we can use the Fundamental Theorem of Calculus to differentiate the
integral. Second, we will strengthen the assumption to require that, for any real α and any x > 1
the integral

∫ xα

x

f(t) dt = 1

does not depend on x.2 Differentiating this equation with respect to x, we obtain with any c > 1
that

0 =
d

dx

∫ xα

x

f(t) dt =
d

dx

∫ xα

c

f(t) dt −
d

dx

∫ x

c

f(t) dt = αxα−1f(xα) − f(x),

2This assumption will only imply that
∫ x2

x

f(t) dt

is constant, but then f can be multiplied by an appropriate number to make sure that this constant equals 1.
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where, to obtain the last equation, we used the chain rule and the Fundamental Theorem of
Calculus. Putting f(e) = 1 where e is the base of the natural logarithm, and writing x = e, this
equation gives

f(eα) =
1

αeα−1
=

e

αeα
.

Writing t = eα, this gives

f(t) =
e

t log t
.

Now, with this f , for any x > 1 we have

∫ x2

x

f(t) dt =

∫ x2

x

e dt

t log t
=

∫ 2 log x

log x

e du

u
= e log 2,

where the second equality was obtained by making the substitution u = log t (du = dt/t).
So if instead of the above choice for f , we take a constant multiple, namely

f(t) =
1

log 2
·

1

t log t
,

then the equation
∫ x2

x

f(t) dt = 1

will be satisfied for any x > 1.

7) (JUNIOR 7) On an infinite chess board, each square is marked with an arrow pointing in one
of the eight directions of 0◦, ±45◦, ±90◦, ±135◦, and 180◦ (negative angles mean counterclockwise
turns), so each square has an arrow pointing to one of its eight nearest neighbors. The arrows
on squares sharing an edge differ by at most 45◦ (multiples of 360◦ are ignored here, so the angle
between the arrow pointing in direction 180◦ and −135◦ is considered to be 45◦). A king is placed
randomly on one of the squares, and it moves from square to square following the arrows. Prove
that the king will never get back to its starting square.

Source: Stan Wagon’s problem list,
http://mathforum.org/wagon/spring98/lemming.html

Original source: Ravi Vakil, A Mathematical Mosaic: Patterns & Problem Solving (Brendan Kelly
Publishing, 1996).

Solution: Call a pair (s1, s2) an edge if (s1, s2) are adjacent squares, i.e., squares sharing a
common edge. Write −(s1, s2) = (s2, s1). Consider the set V of all formal sums

∑

k

ck · (sk, tk)

where ck is an integer (positive, negative, or zero), and (sk, tk) is an edge; only sums containing
finitely many terms are considered. (V is a module3 over the set Z of integers.) To make the formal

3A module is a generalization of vector space, where the scalars are assumed to be only a ring rather than a field.
See

http://en.wikipedia.org/wiki/Module_(mathematics)
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arguments simpler, one may also consider the edge (s, s) containing the same square twice, and
then take (s, s) = 0.4 Call a sum

n−1
∑

k=1

1 · (sk, sk+1)

a circuit if sn = s1. (The coefficient 1 will be omitted below; also terms with zero coefficients
may be omitted.) For such circuit, we can assign the total turn of the arrow by adding the angles
between the squares sk and sk+1, each of these angles being 0◦ or ±45◦.

Call such a circuit a C simple if no square occurs more than once among s1, s2, . . . , sn−1.
Clearly, every circuit is a sum of simple circuits. In fact, if si = sj for some i, j with 1 ≤ i < j ≤ n
then

C =
∑

k:(1<k≤i)∨(j≤k<n)

(sk, sk+1) +
∑

k:i≤k<j

(sk, sk+1),

and each of these sums is a circuit.5

We claim that the total turn of the arrow for a simple circuit C is 0◦. This is because such a
circuit C can be represented as a sum of circuits

(t1, t2) + (t2, t3) + (t3, t4) + (t4, t1)

of length four. In fact, if the simple circuit is directed counterclockwise, take all squares in this
circuit and all the squares inside the region surrounded by the circuit; form all groups of four
adjacent squares among these squares, make them into circuits directed counterclockwise. Then C
will be the sum of all these four-element circuits. The total turn of the arrow for C will be the sum
of the turns of the arrow for each of these for four-element circuits. Since the total turn of arrow
for each of these four-element circuits is 0◦, the same will also be true for C.

Since every circuit can be written as a sum of simple circuits, it is also true that the total turn
of the arrow for any circuit is 0◦.

Assume that the king started on a square and then got back to the same square the first time.
Connect the centers of the squares along which the king moved to form a closed path consisting of
straight line segments. Notice that this closed path cannot intersect itself. Assume, on the contrary,
that there is such a self-intersection. This cannot involve a square the king traverses twice, since
then the king would have to continue in the same direction both times when following the arrow.
The only other kind of self-intersection that might be possible is when

(s1, s2) + (s2, s3) + (s3, s4) + (s4, s1)

is a circuit of length four, and the king first traverses the diagonal s1 to s3, and then the diagonal
s2 to s4; but this is not possible, since arrows on squares s1 and s2 form an angle 0◦ or ±45◦. So
by adding up the turns of the arrow for each move of the king (each of these turns being 0◦, ±45◦,
or ±90◦), the arrow must have made a total turn of either 360◦ or −360◦ during the king’s trip.
Now, to make the king’s trip into a circuit, for each diagonal move one must add one of the squares
adjacent to both of the diagonally touching squares. For this circuit, the total turn of the arrow

4This latter 0 is, of course, denoting the zero element of the module V , which is technically different from the
number 0. If one is really fastidious, one could write a bold face 0 for this.

5Unless the first sum is the empty sum in the trivial case i = 1 and j = n.
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will still be ±360◦. This is a contradiction, since we saw that the total turn of the arrow for every
circuit is 0◦.

8) (SENIOR 4) Assume f is twice differentiable on (0, +∞), f ′′ is bounded on (0, +∞), and
limx→+∞ f(x) = 0. Show that limx→+∞ f ′(x) = 0.

Source: Walter Rudin, Principles of Mathematical Analysis, third edition, McGraw-Hill, New
York, 1976. Chapter 5, Exercise 16, p. 116.

Solution: Let a, x > 0. According to Taylor’s formula with the Lagrange remainder term, we
have

f(x) = f(a) + f ′(a)(x − a) +
f ′′(ξ)

2
(x − a)2

for some ξ between a and x. Let ǫ > 0 be arbitrary, and let x = a + ǫ. Then

f(a + ǫ) = f(a) + f ′(a)ǫ +
f ′′(ξa)

2
ǫ2

for some ξa ∈ (a, a + ǫ), i.e.,

f ′(a)ǫ = f(a + ǫ) − f(a) − f ′′(ξa)ǫ2/2.

The assumption says that f ′′ is bounded, say |f ′′(x)| ≤ M for every x > 0. Then it follows that

|f ′(a)|ǫ = |f(a + ǫ) − f(a)| + Mǫ2/2.

Making a → +∞, it follows that6

lim sup
a→∞

|f ′(a)|ǫ ≤ Mǫ2/2,

that is
ǫ lim sup

a→∞

|f ′(a)| ≤ Mǫ2/2.

We can divide both sides by ǫ to obtain

lim sup
a→∞

|f ′(a)| ≤ Mǫ/2.

Since this is true for every ǫ > 0, it follows that

lim sup
a→∞

|f ′(a)| = 0,

6For a function g, its upper limit, or limit superior, at +∞ is defined as

lim sup
x→+∞

g(x) = lim
x→+∞

(sup{g(t) : t ≥ x}).

If g is bounded on (0, +∞) then the limit on the right exists, since in this case

sup{g(t) : t ≥ x}

is a bounded nonincreasing (i.e., decreasing in the wider sense) function of x.
The use of limit superior in this proof is easily avoided at the price of minor complications, and it is an interesting

exercise to transcribe the proof in a way that does not make use limit superior.
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i.e.,
lim

a→∞
f ′(a) = 0,

which is what we wanted to show.

9) (SENIOR 5) Let S be a set of 16 distinct integers, each greater than or equal to 1 and less
than or equal to 30. Show that there must exist two elements in S which differ by exactly 3.

Source: Math 199, Problem Solving and Putnam Preparation, Spring 2000 (Geoff Mess, Terry
Tao, Christoph Thiele),

http://www.math.ucla.edu/~tao/putnam/

fifth assignment.
Solution: Consider the sets Si = {i, i + 3} for each i ∈ S. Assuming that there are no elements

with difference 3 in S, these sets must be pairwise disjoint. Writing

M = {1, 2, , 3, . . . , 32, 33},

Si ⊂ S for each i ∈ S. Since M has 33 elements, it can have at most 16 pairwise disjoint two-element
subsets; this shows that S cannot have more than 16 elements. This, however, does not lead to a
contradiction, since in fact S has exactly 16 elements, so this argument must be sharpened.

Write
Mj = {n : 1 ≤ n ≤ 33 and n = 3k + j for some integer j}.

Then, for each i ∈ S, we have Si ⊂ Mj for j = 0, j = 1, or j = 2. Since Mj has 11 elements, at
most 5 of these Si’s can be a subset of Mj , for each j. This allows only for a number 3 · 5 of Si’s,
showing that S having 16 elements is impossible.

Note on grammar. In English, “’s” indicates genitive, and not plural; when forming a plural,
no apostrophe is used. This is, however, unsatisfactory when forming plurals of mathematical
symbols. For example, the apostrophe in the plural “Si’s” is used to separate mathematical symbols
from text. This convention is used at least by some mathematical writers.

10) (SENIOR 6) For every real number x1, construct the sequence x1, x2, . . . by setting

xn+1 = xn

(

xn +
1

n

)

for each n ≥ 1. Prove that there exists exactly one value of x1 for which

0 < xn < xn+1 < 1

for every n.
Source: Twenty-sixth International Mathematical Olympiad, 1985, Problem 6,

http://imo.math.ca/Exams/1985imo.html

Solution: Let t be a positive real number, and define the functions xn(t) by putting x1(t) = t
and

(1) xn+1(t) = xn(t)

(

xn(t) +
1

n

)

= x2
n(t) +

xn

n
;

this is exactly the same as the definition of the sequence xn above, except that here we want to
emphasize that xn(t) are functions of the first member x1(t) = t. The following simple observations
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can be made: (i) We have xn(t) > 0 for all n ≥ 1 for every t. (ii) xn(t) is a differentiable function
of t, and its derivative is continuous. (iii) The derivative x′

n(t) is positive for every n and t. This
is easily established by induction, since

x′
n+1(t) = 2xn(t)x′

n(t) +
x′

n(t)

n
.

This equation also shows that (iv) x′
n+1(t) > x′

n(t) whenever xn(t) ≥ 1/2.
It is now easy to show the uniqueness of x1 in the problem. Assume, on the contrary, that there

are t1 and t2 with t1 < t2 such that

0 < xn(ti) < xn+1(ti) < 1

for every n ≥ 1 and for i = 1, 2. The inequality xn(ti) < xn+1(ti) implies that xn(ti) > 1 − 1/n,
and so

(2) lim
n→∞

xn(ti) = 1.

As xn(t) is an increasing function of t (its derivative being positive), we also have xn(t) > 1 − 1/n
for every t with t1 ≤ t ≤ t2. Hence xn(t) > 1/2 for n > 2, and so x′

n(t) > x′
2(t) > 0; thus, there is

and ǫ > 0 such that x′
n(t) > ǫ for every n ≥ 2 and every t with t1 ≤ t ≤ t2. Therefore, using the

Mean-Value Theorem of differentiation, given n ≥ 2, there is a ξ ∈ (t1, t2) such that

xn(t2) − xn(t1) = (t2 − t1)x
′
n(ξ) > (t2 − t1)ǫ.

This contradicts (2) above.
To show the existence of an x1 as required, write

S = {t > 0 : xn(t) ≤ 1 for all integers n}.

The set S is nonempty. This can be seen by noting that if t > 1 is such that for some n > 1
we have xk(t) < 1 for 1 ≤ k < n and xn(t) < 1 − 1/n, then t ∈ S. Indeed, we have xn(t) >
xn+1(t) > xn+2(t) > . . . by (1), and so we in fact have t ∈ S. This shows that 1/4 ∈ S, because
x2(1/4) = 5/16 < 1 − 1/2. Further, S is bounded from above, since no t > 1 belongs to S.

Write s = supS. We claim that then the sequence xn = xn(s) satisfies the requirements of the
problem. To see this, first notice that we have xn(s) ≤ 1 for every n ≥ 1; this is because xn(t)
is a continuous function of t, and xn(t) ≤ 1 for every t ∈ S. Second, notice that we cannot have
xn(s) < 1 − 1/n for any n > 1. Indeed, if this were the case, then, in view of the continuity of
xn(t), there would be a t > s such that xn(t) < 1 − 1/n. Then t ∈ S. Indeed, for k < n, we have
xk(t) < 1 (if we have xk(t) ≥ 1 then we would also have xl(t) ≥ 1 for every l > k according to (1));
further, we also have xk(t) < xn(t) < 1 − 1/n < 1 − 1/k for k > n according to (1).7 The relation
t ∈ S contradicts the choice that s is the supremum of S.

Note also that we cannot even have xn(s) = 1 − 1/n, since, if this were the case, we would
have xn+1(s) = xn(s) = 1 − 1/n < 1 − 1/(n + 1), which, as we just saw, is impossible. Therefore,
1 − 1/n < xn(s) ≤ 1 for every n ≥ 1. Hence, (1) implies that

0 < xn(s) < xn+1(s) ≤ 1

7One needs to use a simple induction on k to show this.
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according to (1). The last inequality is actually strict, since the above inequality implies that
xn(s) < 1 for every n > 1. This completes the proof of the existence of an appropriate x1 (with
x1 = s).

11) (SENIOR 7) Let a2, a3, . . . be a sequence of positive real numbers such that the series
∑∞

n=2 an is convergent. Show that the series
∑∞

n=2 a
1−1/ ln n
n is also convergent.

Source: Középiskolai Matematikai és Fizikai Lapok (Hungarian High School Mathematics and
Physics Journal),

http://www.komal.hu/info/bemutatkozas.e.shtml

Problem N. 150, October 1997 (in Hungarian). Direct link:
http://www.komal.hu/verseny/1997-10/mat.h.shtml

Solution: We will start the above sums with n = 3 instead of n = 2; this will not affect
convergence.8

S = {n ≥ 3 : an ≤ 1/n2} and T = {n ≥ 3 : an > 1/n2}.

Given any n ≥ 3, the derivative of the function x1−1/ ln n for x > 0 is (1 − 1/ lnn)x−1/ ln n, which
is positive; hence this function is an increasing function of x. Therefore, for n ∈ S we have9

a1−1/ ln n
n ≤

(

1

n2

)1−1/ ln n

=
1

n2
·

(

1

n2

)−1/ ln n

=
1

n2
exp

(

−
1

lnn
· ln

1

n2

)

=
e2

n2
.

Hence
∑

n∈S

a1−1/ ln n
n ≤

∞
∑

n=3

e2

n2

is convergent.
For n ∈ T we have 1/an < n2, and so ln(1/an) < lnn2. Noting that the function ex is increasing,

we therefore have

a1−1/ ln n
n = an · a−1/ ln n

n = an exp

(

−
1

lnn
· ln an

)

= an exp

(

1

lnn
· ln

1

an

)

< an exp

(

1

lnn
· lnn2

)

= e2an.

Hence
∑

n∈T

a1−1/ ln n
n ≤

∑

n∈T

e2an

is also convergent.10 This establishes the assertion.

8The reason for considering n ≥ 3 only is that 1 − 1/ ln n > 0 for n ≥ 3.
9To avoid writing tiny letters in the exponent, we will write exp(x) for ex.
10The reason for writing ≤ instead of < in the displayed line above is that the set T may be empty, in which

case both sides are zero.
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