
All Problems on Prize Exam

Spring 2010

Version Date: Mon Mar 8 18:44:39 EST 2010

The source for each problem is listed below when available; but even when the source is given,
the formulation of the problem may have been changed. Solutions for the problems presented here
were obtained without consulting sources for these solutions even when available, and additional
information on how to solve these problems might be obtained by consulting the original sources.
There was some overlap between the problems on the Junior and Senior prize exams; the problems
common to both exams are listed only once.

1) (JUNIOR 1 and SENIOR 1) Show that there is no integer whose square, written in the decimal
system, ends in two odd digits.

Source: Középiskolai Matematikai és Fizikai Lapok (Hungarian Mathematics and Physics Jour-
nal for High Schools), Problem C. 675, Vol. 52 (2002/5), p. 294.

Solution: Assume n = 10k + l, where k ≥ 0 and l with 0 ≤ l ≤ 9 is such an integer. We have

n2 = 100k2 + 20kl + l2.

Hence, the last two digits of n2 are odd if and only if both digits of l2 are odd. For this, l must be
odd; but 12 = 01, 32 = 09, 52 = 25, 49, and 92 = 81, so this does not happen for any l. The proof
is complete.

2) (JUNIOR 2 and SENIOR 2) Let n be an arbitrary positive integer. Show that

n(n + 2)(5n − 1)(5n + 1)

is divisible by 24.
Source: Matematikai Lapok, 1904/04, exercise 427, see

http://db.komal.hu/scan/1904/04/90404148.g4.png

For the whole archive, see
http://www.komal.hu/lap/archivum.h.shtml

Solution: The assertion is true with any integer n, that is, n does not need to be positive. We
need to show that the expression is divisible by 8 and by 3. To show divisibility by 8, note that if
n is even, then one of n and n + 2 is divisible by 4 (and the other is divisible by 2), so n(n + 2) is
divisible by 8. If n is odd, then one of 5n− 1 and 5n + 1 is divisible by 4 (and the other is divisible
by 2). Then (5n − 1)(5n + 1) is divisible by 8.

As for divisibilty by 3, we have

n(n + 2)(5n − 1)(5n + 1) = −n
(

(n + 1) − 6n)(n + 2)(5n + 1),

and this is divisible by 3 exactly when

n(n + 1)(n + 2)(5n + 1)

is divisible by 3. Among the numbers n, n + 1, n + 2, one must be divisible by 3, showing that the
original expression is also divisible by 3.

All computer processing for this manuscript was done under Fedora Linux. AMS-TEX was
used for typesetting.
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3) (JUNIOR 3 and SENIOR 3) Show that there is no triangle whose altitudes are of length 4,
7, and 10 units.

Source: International Mathematical Talent Search – Round 8, Problem 1/8, coordinator Dr.
George Berzsenyi

http://www.cms.math.ca/Competitions/IMTS/

and
http://www.cms.math.ca/Competitions/IMTS/imts8.html

Solution: Assume there is such a triangle. Let the sides of the triangle be a, b, and c, and let
the corresponding altitudes be 4, 7, and 10. Writing A for the area of the triangle, we then have

2A = 4a = 7b = 10c,

that is

b =
4

7
a and c =

4

10
a =

2

5
a.

Then

b + c =

(

4

7
+

2

5

)

a =
34

35
a < a.

This is a contradiction, since in any triangle, the sum of two sides are greater then the third side.

4) (JUNIOR 4) Show that
3

√√
5 + 2 − 3

√√
5 − 2 = 1.

Source: Középiskolai Matematikai és Fizikai Lapok (Hungarian Mathematics and Physics Jour-
nal for High Schools), Problem B. 3623, Vol. 53 (2003/3), p. 156.

Solution: Writing

r =
3

√√
5 + 2 − 3

√√
5 − 2,

a =
√

5 + 2, and b =
√

5 − 2, we have

r3 =
(

3
√

a − 3
√

b
)3

= a − 3
3
√

a2b + 3
3
√

ab2 − b.

An easy calculation shows that

a2b = (
√

5 + 2)2(
√

5 − 2) = (
√

5 + 2) (
√

5 + 2)(
√

5 − 2) = (
√

5 + 2) (5 − 4) =
√

5 + 2 = a.

Similarly

ab2 = (
√

5 + 2)(
√

5 − 2)2 = (
√

5 + 2)(
√

5 − 2) (
√

5 − 2) = (5 − 4) (
√

5 − 2) =
√

5 − 2 = b.

Hence
r3 = a − 3 3

√
a + 3

3
√

b − b = a − b − 3r = 4 − 3r.

That is,
r3 + 3r − 4 = 0.

It is immediate that r = 1 is a solution of this equation. Now

r3 + 3r − 4 = (r − 1)(r2 + r + 4),
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and the equation r3 + r + 4 = 0 has no real solutions. As r is real, we must have r = 1, as we
wanted to show.

5) (JUNIOR 5) How many nonnegative real solutions does the equation x = 2000 sin x have (of
course, we are using radians here when evaluating sinx). (Note: The approximation of π up to
five decimal places is 3.14159.)

Source: Missouri State University Problem Archive, Advanced Problem #14,
http://faculty.missouristate.edu/l/lesreid/Adv14.html

For more problems at the site, see
http://faculty.missouristate.edu/l/lesreid/ADVarchives.html

Solution: As −2000 ≤ 2000 sinx ≤ 2000, all nonnegative solutions lie in the interval [0, 2000].
Let k be a nonnegative integer. In the interval ((2k + 1)π, (2k + 2)π) the equation has no solution,
since sin x is negative there. In the interval [2kπ, (2k + 1)π] there may be 0, 1, or 2 solutions.
The number of solutions will be 0 is x > 2000, since then the left-hand side is greater than the
right-hand side.

We have sin 2kπ = sin(2k + 1)π = 0 and sin(2k + 1/2)π = 1. Noting that sinx is concave1 in
the interval [2kπ, (2k + 1)π], the equation has exactly two solutions in case (2k + 1)π ≤ 2000.

The case 2kπ < 2000 < (2k + 1)π is somewhat more complicated, because it might happen
that the curve y = x is tangent to the curve y = 2000 sin x, in which case the equation has a
double solution, and this may be counted as a single solution, depending on how one interprets the
question in the problem. Fortunately, this problem will not come up. This is because, from the
decimal representation of π one can see that 2kπ < 2000 < (2k + 1)π happens exactly for k = 318.
For this k, we have (2k + 1/2)π < 2000,2 so, by the Intermediate Value Theorem, the equation
must have one solution in each the intervals (2kπ, (2k + 1/2)π) and (2k + 1/2)π, (2k + 1)π), so the
two solutions do not coincide. That is, for each value of k = 0, 1, 2, . . . , 318 we get exactly two
solutions, giving altogether 2 · 319 = 638 solutions.3

6) (JUNIOR 6) If r + s + t = 3, r2 + s2 + t2 = 1 and r3 + s3 + t3 = 3, compute rst.

Source: 2007 Rice University Math Tournament, Algebra Test, Problem 8.
http://www.ruf.rice.edu/~eulers/tests/2007test/alg2007.pdf

Solution: We want to determine the coefficients of rst, r2s, and r3 in (r + s + t)3. To this end,
write r = r1 = r2 = r3, s = s1 = s2 = s3, t = t1 = t2 = t3. Then

(r + s + t)3 = (r1 + s1 + t1)(r2 + s2 + t2)(r3 + s3 + t3).

The only way we get r3 here is r1r2r3, i.e., the coefficient of r3 is 1. We can get r2s as r1r2s3,
r1r3s2, and r2r3s1, i.e., the coefficient of r2s is 3. The coefficient of rs2 is the same, for reasons of
symmetry. We can get rst as r1s2t3, r3s1t3, . . . , i.e., six ways, associated with all six permutations

1A function is called concave if it is concave down, and it is called convex if it is concave up. However, the terms
“concave up” and “concave down” are only used in college courses on calculus, and are not used in mathematics.
For that matter, the term “calculus” is not used in mathematics to describe the material taught in college calculus
courses; the term that is used is “mathematical analysis”. The term originates in l’Hospital’s 1696 book Analyse
des infiniment petits pour l’intelligence des lignes courbes (Analysis of the Infinitely Small to Learn about Curved
Lines).

2We have 3.14 < π < 3.142, and, with k = 318, (2k + 1/2)π < (2k + 1/2) · 3.142 = 1999.883 and (2k + 1)π >
(2k + 1) · 3.14 = 2000.18 (the last two equalities involving decimals are exact, and not approximate, equalities).

3Note that no solution is double-counted here, since a solution cannot be at the endpoint of any of these intervals
(except the solution at x = 0), since π is irrational.

3



of 123. Furthermore, in

(r2 + s2 + t2)(r + s + t) == (r2
1 + s2

1 + t21)(r2 + s2 + t2) =

we have r3 occur as r2
1r2, i.e. r3 occurs once. Further, r2s occurs r2

1s2 occurs once. The occurrence
of other terms can be inferred. Therefore,

(r + s + t)3 = −2(r3 + s3 + t3) + 3(r2 + s2 + t2)(r + s + t) + 6rst.

Substituting the given numerical values here, we obtain

33 = −2 · 3 + 3 · 1 + 6rst.

This gives rst = 5.

7) (JUNIOR 7) Let n be a positive integer, and assume we are given 2n− 1 irrational numbers.
Prove that it is possible to select n numbers x1, x2, . . . , xn among them such that, given arbitrary
nonnegative rational numbers a1, a2, . . . , an, the number

n
∑

i=1

aixi

is rational if and only if a1 = a2 = . . . = an = 0.
Source: Középiskolai Matematikai és Fizikai Lapok (Hungarian Mathematics and Physics Jour-

nal for High Schools), Problem A. 321, Vol. 53 (2003/5), p. 297. A Bulgarian Mathematics Com-
petition Problem.

Solution: We are going to do induction on n. The assertion is clearly true in case n = 1. Let
n ≥ 1 be fixed, and assume the assertion is true for this n. Let 2(n + 1) − 1 = 2n + 1 irrational
numbers be given. Then, by the assumption, we can select n numbers x1, x2, . . . , xn among them
with the required property. Let the remaining numbers be xn+1, xn+2, . . . , x2n+1, and assume
that, for any j with n + 1 ≤ j ≤ 2n + 1, the numbers x1, x2, . . . , xn, and xj do not have the
required property; that is, we can find nonnegative rational numbers bj1, bj2, . . . , bjn, and bj not
all of which are 0 such that

n
∑

i=1

bjixi + bjxj = rj

is rational. Here we cannot have bj = 0, since the numbers x1, x2, . . . , xn satisfy the required
property, according to the assumption. That is, with ai = bji/bj and rational sj = rj/bj we have

n
∑

i=1

ajixi + xj = sj ,

i.e.,

xj = sj −
n

∑

i=1

ajixi

for j = n + 1, n + 2, . . . , 2n + 1.
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We claim that then the numbers xn+1, xn+2, . . . , x2n+1 satisfy the required property. To see
this, let cn+1, cn+2, . . . , c2n+1 be nonnegative rational numbers not all of which are 0. Then

2n+1
∑

j=n+1

cjxj =
2n+1
∑

j=n+1

cjsj −
2n+1
∑

j=n+1

cj

n
∑

i=1

ajixi =
2n+1
∑

j=n+1

cjsj −
n

∑

i=1

(

2n+1
∑

j=n+1

cjaji

)

xi.

Here the numbers
∑2n+1

j=n+1
cjaji are not zero for all i with i = 1, 2, . . . , n; indeed, if ci 6= 0, then

this sum is not zero, either. These sums are rational, so the number

n
∑

i=1

(

2n+1
∑

j=n+1

cjaji

)

xi

must be irrational by our assumption. Since the first sum on the right-hand side is rational, the
left-hand side is irrational, as we claimed. The proof is complete.

8) (SENIOR 4) Let a1 = 1, and, for n ≥ 1, put

an+1 = an +
1

∑n

k=1
ak

.

Show that the sequence of the numbers an is unbounded.
Source: Középiskolai Matematikai és Fizikai Lapok (Hungarian Mathematics and Physics Jour-

nal for High Schools), Problem B. 3640, Vol. 53 (2003/4), p. 231.
Solution: It is easy to see that the sequence is increasing. Assume that there is a positive A

such that an ≤ A for all n ≥ 1. Then,
n

∑

k=1

ak ≤ An,

so

an+1 ≥ an +
1

An
.

By induction, it then follows that

an+1 ≥ 1

A

n
∑

k=1

1

k
.

Indeed, this is true for n = 1, since A ≥ a1 = 1 and a2 = 2, and the induction step directly follows
from the last but one displayed formula. Since the series

∞
∑

n=1

1

n

is divergent, the sequence of numbers an is not bounded. This is a contradiction, completing the
proof.

9) (SENIOR 5) Let n be a positive integer, and let A be an n × n matrix that satisfies the
polynomial equation

4A3 + 3A2 + 2A + I = O,
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where I denotes the n × n identity matrix and O denotes the n × n zero matrix. Show that A is
invertible.

Source: The idea here is well known, but the problem was inspired by Problem 3 on the First
Annual Iowa Collegiate Mathematics Competition. See

http://www.central.edu/maa/Contest/Problems/Probs95.htm

For more on the Annual Iowa Collegiate Mathematics Competition, see
http://www.central.edu/maa/Contest/#prevwinners

Solution: According to the above equation, we have

I = −4A3 − 3A2 − 2A = A(−4A2 − 3A − 2I) = (−4A2 − 3A − 2I)A,

showing that the matrix −4A2 − 3A − 2I is the inverse of A.

10) (SENIOR 6) Find the limit

lim
n→∞

2n
∑

k=n+1

1

k
.

Source: Missouri State University Problem Archive, Advanced Problem #10,
http://faculty.missouristate.edu/l/lesreid/Adv10.html

For more problems at the site, see
http://faculty.missouristate.edu/l/lesreid/ADVarchives.html

Solution: We have
2n
∑

k=n+1

1

k
=

2n
∑

k=n+1

∫ k

k−1

1

k
dx <

2n
∑

k=n+1

∫ k

k−1

1

x
dx =

∫ 2n

n

dx

x
= log 2n − log n = log 2.

Here log denotes the natural logarithm. In calculus courses and in other sciences it is customary
to use ln for this; in mathematics, it is more usual to use log for the natural logarithm.

Similarly,

2n
∑

k=n+1

1

k
=

2n
∑

k=n+1

∫ k+1

k

1

k
dx >

2n
∑

k=n+1

∫ k+1

k

1

x
dx =

∫ 2n+1

n+1

dx

x
= log(2n + 1) − log(n + 1)

= log
2n + 1

n + 1
= log

(

2n + 2

n + 1
− 1

n + 1

)

= log

(

2

(

1 − 1

2(n + 1)

))

= log 2 + log

(

1 − 1

2(n + 1)

)

.

Now

lim
n→∞

log

(

1 − 1

2(n + 1)

)

= log 1 = 0,

where the first equality follows from the continuity of the logarithm. Therefore, the limit in question
is log 2.

Remark. We will briefly outline another solution, which uses less elementary tools. We have

2n
∑

k=n+1

1

k
=

2n
∑

k=1

1

k
−

n
∑

k=1

1

k
=

n
∑

k=1

(

1

2k − 1
+

1

2k

)

−
n

∑

k=1

1

k

=

n
∑

k=1

(

1

2k − 1
+

1

2k
− 1

k

)

=

n
∑

k=1

(

1

2k − 1
− 1

2k

)

=

2n
∑

k=1

(−1)k+1 1

k
.
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The limit of the sum on the right-hand side as n tends to ∞ is

∞
∑

k=1

(−1)k+1 1

k
= log 2,

but the proof of this is somewhat subtle; see e.g. Maxwell Rosenlicht, Introduction to Analysis,
Dover Publications, New York, 1986, p. 155.4

11) (SENIOR 7) Let p be an odd prime number, and consider the points in the plane whose
coordinates are among the numbers 0, 1, . . . , p−1. Prove that it is possible to pick p points among
these such that no three of the points lie on the same line.

Source: Kürschák József Matematikai Tanulóverseny, 1997 (Student Mathematics Competition
in memory of József Kürschák, 1997, Hungary), Problem 1. See

http://matek.fazekas.hu/portal/feladatbank/egyeb/Kurschak/kurs97/kurs97.html

See also
http://matek.fazekas.hu/portal/linkek/index.html

for the Student Mathematics Portal in Hungary, where there are links to various Hungarian math-
ematics competitions.

Solution: Pick all pairs of points (k, l) such that 0 ≤ k < p and l ≡ k2 mod p. Take any three
such distinct points (k1, l1), (k2, l2), (k3, l3). To show that these do not lie on the same line, we
need to show that the determinant5

∣

∣

∣

∣

∣

∣

1 1 1
k1 k2 k3

l1 l2 l3

∣

∣

∣

∣

∣

∣

is not zero. We are going show that this determinant is in fact not congruent to 0 modulo p. The
clearest way to do this is to work in the finite field Fp.

6 The elements of this field are the integers
0, 1, . . . , p− 1.7 One writes a+ b = c and ab = d for these integers if one has a+ b ≡ d mod p and
ab ≡ d mod p with the usual operations on integers. The points selected above can be described

4The proof in Rosenlicht’s book of this equality is based on the Taylor expansion

log(1 + x) =

∞
∑

k=1

(−1)k+1 xk

k
,

valid for x with −1 < x < 1. Then, using the continuity of log x and the uniform convergence on the interval [0, 1]
of the series on the right, this equation is extended to x = 1. The proof above and the present remark can also be
viewed as a more direct way of verifying the equality

∞
∑

k=1

(−1)k+1 1

k
= log 2.

5In fact, this determinant represents twice the area of the triangle in the plane with vertices (k1, l1), (k2, l2),

(k3, l3). See

http://en.wikipedia.org/wiki/Triangle
6See

http://en.wikipedia.org/wiki/Finite_field
7Instead of these integers, it is more customary to take the elements as the equivalence classes of the integers

modulo p, but our choice allows us to simplify the description that follows.
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in Fp as the points (k, k2) for k ∈ Fp. To show that the above determinant is not congruent to 0
modulo p, it is enough to show that we have

∣

∣

∣

∣

∣

∣

1 1 1
k1 k2 k3

k2
1 k2

2 k2
3

∣

∣

∣

∣

∣

∣

6= 0

in Fp for distinct k1, k2, and k3. This determinant is known as the Vandermonde determinant,8

and its value is well known to be (k2 −k1)(k3 −k1)(k3 −k2), and this is clearly not zero. The proof
is complete.

8See
http://en.wikipedia.org/wiki/Vandermonde_matrix
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