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The source for each problem is listed below when available; but even when the source is given,
the formulation of the problem may have been changed. Solutions for the problems presented here
were obtained without consulting sources for these solutions even when available, and additional
information on how to solve these problems might be obtained by consulting the original sources.
There was some overlap between the problems on the Junior and Senior prize exams; the problems
common to both exams are listed only once.

1) (SENIOR 1) Let n be an integer. Prove that

n4 + 6n3
− n2 + 18n

is divisible by 24.
Source: Exercise 397, Középiskolai Matematikai és Fizikai Lapok Vol. V, No. 5 (1929), p. 157,

proposed by László Papp. See
http://db.komal.hu/scan/

http://db.komal.hu/scan/1929/01/92901157.g4.png

(in Hungarian).
Solution: Writing

N = n4 + 6n3
− n2 + 18n,

we need to show that N is divisible by 3 and by 8. We have

N = (n4
− n2) + 3(2n3 + 6n) = n · (n− 1)n(n+ 1) + 3(2n3 + 6n).

Since one of the numbers n− 1, n, and n+ 1 is divisible by 3, their product is also divisible by 3.
Hence N is divisible by 3.

Furthermore,

N = (n4
− 2n3

− n2 + 2n) + 8(n3 + 2n) = (n3(n− 2)− n(n− 2)) + 8(n3 + 2n)

= (n3
− n)(n− 2) + 8(n3 + 2n) = (n− 2)(n− 1)n(n+ 1) + 8(n3 + 2n).

There are two even numbers among the numbers n− 2, n− 1, n, n+1, and one of these is divisible
by 4. Thus, their product is divisible by 8, showing that N is also divisible by 8, which is what we
wanted to show.

2) (SENIOR 2) Let n ≥ 2 be an integer, and let a1, a2, . . . , an be nonzero real numbers, and
assume an = a1. Show that there is an even number of integers k with 1 ≤ k ≤ n − 1 for which
akak+1 < 0.

Solution: Noting that an = a1, we have

n−1
∏

k=1

akak+1 =
n−1
∏

k=1

a2k > 0;

All computer processing for this manuscript was done under Debian Linux. The Perl program-

ming language was instrumental in collating the problems. AMS-TEX was used for typesetting.
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therefore, there must be an even number of negative factors in the product on the left-hand side.

3) (SENIOR 3) Let α, β, γ be reals such that α+ β + γ = π. Prove that

sin2 α+ sin2 β − sin2 γ = 2 sinα sinβ cos γ.

Source: Problem 454, Középiskolai Matematikai és Fizikai Lapok Vol. V, No. 5 (1929), p. 159.
See

http://db.komal.hu/scan/

http://db.komal.hu/scan/1929/01/92901159.g4.png

(in Hungarian).
Solution: Noting that

sin γ = sin(π − α− β) = sin(α+ β) = sinα cosβ + cosα sinβ,

the left-hand side can be written as

sin2 α+ sin2 β − sin2 γ = sin2 α+ sin2 β − (sinα cosβ + cosα sinβ)2

= sin2 α(1− cos2 β) + sin2 β(1− cos2 α)− 2 sinα sinβ cosα cosβ

= sin2 α sin2 β + sin2 β sin2 α− 2 sinα sinβ cosα cosβ

= 2 sin2 α sin2 β − 2 sinα sinβ cosα cosβ.

Further, we have

cos γ = cos(π − α− β) = − cos(α+ β) = cosα cosβ − sinα sinβ.

Hence, the right-hand side can be written as

2 sinα sinβ cos γ = −2 sinα sinβ(cosα cosβ − sinα sinβ)

= 2 sin2 α sin2 β − 2 sinα sinβ cosα cosβ.

Since the right-hand sides we derived are identical, the above identity follows.

4) (SENIOR 4) Let a1, a2, . . . be positive numbers such that

∞
∑

n=1

an < ∞.

Prove that there are positive numbers cn such that

lim
n→∞

cn = ∞ and
∞
∑

n=1

cnan < ∞.

Source: Problem 1, Mathematics Ph. D. Preliminary Exam, Spring 1989, University of Cali-
fornia, Berkeley. See

http://math.berkeley.edu/~desouza/pb.html

http://math.berkeley.edu/~desouza/Prelims/Spring89/Spring89.html
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Solution: For any positive integer k, let Nk be the least positive integer such that

∞
∑

n=Nk

an < 2−k.

For n with 1 ≤ n < N1, let cn = 1, and for n with Nk ≤ n < Nk+1, let cn = k (k > 0). We have

∞
∑

n=1

cnan ≤

N1−1
∑

n=1

an +

∞
∑

k=1

k2−k < ∞.

5) (SENIOR 5) Find f(x) such that f ′′(x) = f(x)f ′(x), f(0) = 0, and f ′(0) = 1/2. (It is
assumed that f ′′(x) is continuous on the interval where the first equation is satisfied.)

Source: Based on Problem 69 in the Advanced Problem Archive at Missouri State University.
See

http://people.missouristate.edu/lesreid/ADVarchives.html

Solution: We have

f ′(x) =

∫

f(x)f ′(x) dx.

The integral on the right-hand side can be easily evaluated by making the substitution y = f(x).
We obtain

y′ =

∫

y dy =
y2 + c1

2
,

where c1 is an arbitrary constant. For x = 0 we have y = 0 and y′ = 1/2, which gives c1 = 1/2.
That is,

y′

y2 + 1
=

1

2
.

Hence

arctan y =
x+ c2

2
,

i.e.,

y = tan
x+ c2

2
.

Here y = f(x). As f(0) = 0, we have c2 = 0; that is,

f(x) = tan
x

2
.

6) (SENIOR 6) Let xn be positive reals such that the series

∞
∑

n=1

xn

converges, and for each integer n ≥ 1 let

rn =

∞
∑

k=n

xk.
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Prove that the series
∞
∑

n=1

xn

rn

diverges.
Source: Problem 3448 in the American Mathematical Monthly, Vol. 37 (1930), pp. 446-447,

proposed by Oliver D. Kellogg. See
http://www.jstor.org/stable/2298440

Solution: Assume, on the contrary, that the series
∑∞

n=1
xn/rn converges, and let N be such

that
∞
∑

n=N

xn

rn
< 1.

Noting that rn+1 = rn − xn < rn for every n ≥ 1, and so rn ≤ rN for n ≥ N , we have

∞
∑

n=N

xn

rn
≥

∞
∑

n=N

xn

rN
=

1

rN

∞
∑

n=N

xn =
1

rN
· rN = 1,

which is a contradiction, proving the assertion.

7) (SENIOR 7) Evaluate
∫ π/2

0

ln(sinx) dx.

Source: The Harvard-MIT Mathematics Tournament, Calculus Problem 8, February 26, 2000.
See

http://web.mit.edu/hmmt/www/datafiles/problems/

http://web.mit.edu/hmmt/www/datafiles/problems/2000.shtml

Solution: First note that the integral above is an improper integral, since limxց0 log sinx =
−∞. The convergence of the integral is easily established, since limx→∞ sinx/x = 1, and therefore
limxց0(log sinx − log x) = 0. Below, we will use change of variables in integrals; since these rules
are not usually formulated for improper integrals, one needs to check that the applications of these
rules are indeed correct, by converting the improper integrals to limits of Riemann integrals.1 By
using the substitution t = π/2− x, we can see that

∫ π/2

0

ln sinx dx = −

∫ 0

π/2

ln sin
(π

2
− t
)

dt =

∫ π/2

0

ln cos t dt.

Thus,

2

∫ π/2

0

ln sinx dx =

∫ π/2

0

(ln sinx+ ln cosx) dx = 2

∫ π/2

0

ln(sinx cosx) dx

=

∫ π/2

0

ln

(

1

2
sin 2x

)

dx =

∫ π/2

0

(

ln
1

2
+ ln sin 2x

)

dx =
π

2
ln

1

2
+

∫ π/2

0

ln sin 2x dx

=
π

2
ln

1

2
+

1

2

∫ π

0

ln sin t dt =
π

2
ln

1

2
+

1

2

(

∫ π/2

0

ln sin t dt+

∫ π

π/2

ln sin t dt

)

;

1If one knows Lebesgue integration theory, then one can observe that the integral is in fact a convergent Lebesgue

integral, and the change of variable rule is in fact formulated for Lebesgue integrals.
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here the penultimate2 equality uses the substitution t = 2x. On the right-hand side, the two
integrals are equal, as can be seen by using the substitution x = π − t, since sin t = sin(π − t).
Hence we have

2

∫ π/2

0

ln sinx dx =
π

2
ln

1

2
+

∫ π/2

0

ln sin t dt,

and so
∫ π/2

0

ln sinx dx =
π

2
ln

1

2
= −

π

2
ln 2.

2The one before the last one.
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