1) Let n be an integer. Prove that

$$n^4 + 6n^3 - n^2 + 18n$$

is divisible by 24.

2) Let $n \ge 2$ be an integer, and let a_1, a_2, \ldots, a_n be nonzero real numbers, and assume $a_n = a_1$. Show that there is an even number of integers k with $1 \le k \le n-1$ for which $a_k a_{k+1} < 0$.

3) Let α , β , γ be reals such that $\alpha + \beta + \gamma = \pi$. Prove that

$$\sin^2 \alpha + \sin^2 \beta - \sin^2 \gamma = 2\sin \alpha \sin \beta \cos \gamma.$$

4) Let a_1, a_2, \ldots be positive numbers such that

$$\sum_{n=1}^{\infty} a_n < \infty.$$

Prove that there are positive numbers c_n such that

$$\lim_{n \to \infty} c_n = \infty \quad \text{and} \quad \sum_{n=1}^{\infty} c_n a_n < \infty.$$

5) Find f(x) such that f''(x) = f(x)f'(x), f(0) = 0, and f'(0) = 1/2. (It is assumed that f''(x) is continuous on the interval where the first equation is satisfied.)

6) Let x_n be positive reals such that the series

$$\sum_{n=1}^{\infty} x_n$$

converges, and for each integer $n \ge 1$ let

$$r_n = \sum_{k=n}^{\infty} x_k$$

Prove that the series

$$\sum_{n=1}^{\infty} \frac{x_n}{r_n}$$

diverges.

7) Evaluate

$$\int_0^{\pi/2} \ln(\sin x) \, dx.$$

SOON AFTER THE EXAM, SOLUTIONS WILL APPEAR ON THE WEB SITE http://www.sci.brooklyn.cuny.edu/~mate/prize12/index.html

All computer processing for this manuscript was done under Debian Linux. The Perl programming language was instrumental in collating the problems. A_{MS} -T_EX was used for typesetting.