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The source for each problem is listed below when available; but even when the source is given,
the formulation of the problem may have been changed. Solutions for the problems presented here
were obtained without consulting sources for these solutions even when available, and additional
information on how to solve these problems might be obtained by consulting the original sources.
There was some overlap between the problems on the Junior and Senior prize exams; the problems
common to both exams are listed only once.

1) (SENIOR 1) Prove that the product of two consecutive positive integers is not a square of an
integer.

Source: Problem 202, Középiskolai Matematikai és Fizikai Lapok Vol. III, No. 3 (1926), p. 92,
http://db.komal.hu/scan/

http://db.komal.hu/scan/1926/11/92611092.g4.png

(in Hungarian).
Solution: Given a positive integer n, its square is n2, and the square of the next integer is

(n + 1)2 = n2 + 2n + 1. Since n(n + 1) = n2 + n is between these two numbers, it cannot be the
square of an integer.

2) (SENIOR 2) Show that
√
2,

√
5, and

√
7 cannot belong to the same geometric progression.

Source: Problem 205, Középiskolai Matematikai és Fizikai Lapok Vol. III, No. 3 (1926), p. 92,
http://db.komal.hu/scan/

http://db.komal.hu/scan/1926/11/92611092.g4.png

(in Hungarian).
Solution: Assuming that these numbers belong to the same geometric progression an = aqn,

n = 0, 1, 2, . . . , where a > 0, q > 0, and q 6= 1, we have
√
2 = aqk1 ,

√
5 = aqk2 ,

√
7 = aqk3 for

some nonnegative integers k1, k2, and k3. Then
√

5/2 = qk2−k1 and
√

7/2 = qk3−k1 , and so

7

2
=

(

5

2

)k/l

with k = k3 − k1 and l = k2 − k1; note that, clearly, k1 < k2 < k3, and so k > l > 0, in case q > 1,
and k1 > k2 > k3, and so k < l < 0, in case 0 < q < 1. and l > 0. Thus, we have

7l · 2k−l = 5k.

This is impossible in case k > l > 0, because no positive integer power of 5 is divisible by 2. In
case k < l < 0, write this equation equivalently as

7−l · 2−(k−l) = 5−k,

so that all the exponents are positive. This equation is impossible for the same reason.

3) (SENIOR 3) Prove that an integer n is the sum of the squares of two integers if and only if
2n has the same property (i.e., 2n is also the sum of the squares of two integers; note that one or
both of these integers may or may not be zero).

All computer processing for this manuscript was done under Debian Linux. The Perl programming language was

instrumental in collating the problems. AMS-TEX was used for typesetting.
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Source: Középiskolai Matematikai és Fizikai Lapok Vol. XV, No. 3 (1938), Problem 1461, p.
80,

http://db.komal.hu/scan/

http://db.komal.hu/scan/1938/11/93811080.g4.png

(in Hungarian).
Solution: If n2 = x2 + y2 for some integers x and y then 2n = 2x2 + 2y2 = (x+ y)2 + (x− y)2.

This shows that if n can be represented as the sum of squares of two integers then 2n can also be
so represented.

If, on the other hand, 2n = u2 + v2 for some integers u and v then n = x2 + y2 with x and y
such that u = x+ y and v = x− y, that is, with

x =
u+ v

2
and y =

u− v

2
.

Observing the equation 2n = u2 + v2 implies that u and v have the same parity (i.e., that either
they are both even or they are both odd), it follows that x and y are integers. Hence it also follows
that if 2n can be represented as the sum squares of two integers then n can also be so represented.

4) (SENIOR 4) Evaluate
∞
∑

n=0

1

(2n)!
.

Source: A special case of Problem 77 in the Advanced Problem Archive at Missouri State
University. See

http://people.missouristate.edu/lesreid/ADVarchives.html

Solution: We have

ex =
∞
∑

n=0

xn

n!
.

Hence

e =

∞
∑

n=0

1

n!
and

1

e
= e−1 =

∞
∑

n=0

(−1)n

n!
.

Therefore
e+ 1/e

2
=

∞
∑

n=0

1 + (−1)n

2 · n! =
∞
∑

n=0

1

(2n)!
;

the second equation holds since

1 + (−1)n

2
=

{

1 if n is even,

0 if n is odd.

5) (SENIOR 5) Given positive real numbers an such that an < an+1 + a2n, prove that
∑

∞

n=1 an
is divergent.

Source: Problem P. 398, Középiskolai Matematikai Lapok Vol. 34, No. 5 (1984), p. 222,
http://db.komal.hu/scan/

http://db.komal.hu/scan/1984/05/98405222.g4.png

(in Hungarian).
2



Solution: Assume
∑

∞

n=1 an is convergent. Then limn→∞ an = 0. Pick an integer n ≥ 1 such
that

∞
∑

k=n

ak < 1

and an ≥ ak for all integers k > n. Such an n can be found as follows. Let n1 ≥ 1 be such that
∑

∞

k=n1
ak < 1, and pick n2 > n1 such that an2

> an1
if possible, and then pick n3 > n2 such that

an3
> an2

if possible, and so on. Now, there cannot be an infinite sequence {ank
}∞k=1 such that

ani
> anj

whenever 1 ≤ i < j since limn→∞ an = 0. So let N ≥ 1 be such that we have ani
> anj

whenever 1 ≤ i < j ≤ N , and assume that this sequence cannot be continued, i.e., that there is
no k > nN such that ak > anN

. Then n = nN will have the desired property, i.e., we will have
an ≥ ak for k > n. We have ak < ak+1 + a2k for all k ≥ 1 according to the assumptions. Taking an
arbitrary m > n and summing this for k with n ≤ k ≤ m, we obtain that

m
∑

i=n

ak <
m
∑

i=n

ak+1 +
m
∑

i=n

a2k,

i.e., that

an < am+1 +
m
∑

i=n

a2k ≤ am+1 +
m
∑

i=n

anak = am+1 + an

m
∑

i=n

ak,

where the second inequality follows by noting that a2k = akak ≤ anak for k > n, since ak ≤ an for
k > n according to the choice of n. Making m → ∞ and noting that am+1 → 0, this implies that

an ≤ an

∞
∑

i=n

ak.

This is a contradiction, since
∑

∞

k=n ak < 1 according to the choice of n, showing that
∑

∞

n=1 an is
divergent.

6) (SENIOR 6) Assume f is continuous on [0,+∞), differentiable on (0,+∞), f ′ is strictly
decreasing on (0,+∞), and f(0) = 0. Prove that f(x)/x is strictly decreasing on (0,+∞).

Source: Problem 5, Ohio State University Mathematics Ph. D. Qualifying Examination in
Analysis, Autumn 2003. See

http://www.math.osu.edu/graduate/current/qual

Solution: Let x, y be real numbers such that 0 < x < y. By the Mean-Value Theorem of
Differentiation, we have

(1) f(x) = f(x)− f(0) = xf ′(ξ)

for some ξ with 0 < ξ < x, and
f(y)− f(x) = (y − x)f ′(η)

for some η with x < η < y. Since ξ < η, we have f ′(ξ) > f ′(η). Hence

f(y) = (y − x)f ′(η) + f(x) < (y − x)f ′(ξ) + f(x)

= (y − x)f ′(ξ) + xf ′(ξ) = yf ′(ξ) =
y

x
xf ′(ξ) =

y

x
f(x).
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Thus
f(y)

y
<

f(x)

x
,

which is what we wanted to prove.

Note: In a somewhat different proof, one may note that f ′(x) < f ′(ξ) in equation (1), and so

f(x) > xf ′(x)

for x > 0. Hence
(

f(x)

x

)

′

=
xf ′(x)− f(x)

x2
< 0

for all x > 0, showing that f(x)/x is strictly decreasing.

7) (SENIOR 7) Let f be a continuous real-valued function in the interval [0, 1] satisfying the

inequality xf(y) + yf(x) ≤ 1 for any x, y ∈ [0, 1]. Show that
∫ 1

0
f(x) dx ≤ π/4.

Source: The International Mathematics Competition, 1998, Problem 6. Follow the link at the
site

http://www.artofproblemsolving.com/Forum/resources.php

to IMC (under the heading “Undergraduate Competitions,” in the middle of the page).
Solution: Let t ∈ [0, π/2]. Then, with x = sin t and y = cos t we have

f(cos t) sin t+ f(sin t) cos t ≤ 1.

Integrating this on [0, π/2], we obtain that

∫ π/2

0

f(cos t) sin t dt+

∫ π/2

0

f(sin t) cos t dt ≤
∫ π/2

0

dt =
π

2
.

Noting that the substitutions x = cos t and x = sin t give, respectively, that

∫ 1

0

f(x) dx = −
∫ 0

π/2

f(cos t) sin t dt =

∫ π/2

0

f(cos t) sin t dt,

and
∫ 1

0

f(x) dx =

∫ π/2

0

f(sin t) cos t dt,

the left-hand side of the above inequality equals 2
∫ 1

0
f(x) dx, and so the inequality

∫ 1

0

f(x) dx ≤ π

4
.

follows.
Note that the function f(x) =

√
1− x2 satisfies the assumptions, since, for any x, y in the

interval [0, 1] we have

x
√

1− y2 + y
√

1− x2 ≤
√

y2 + x2
√

(1− x2) + (1− y2)

≤ (y2 + x2) + ((1− x2) + (1− y2))

2
= 1,
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where the first inequality follows from the Cauchy–Schwarz inequality, and the second inequality
holds by the inequality between the geometric and arithmetic means. Furthermore, for this choice
of f we have

∫ 1

0

f(x) dx =

∫ 1

0

√

1− x2 dx =

∫ π/2

0

cos2 t dt = −
∫ 0

π/2

sin2 t dt

=

∫ π/2

0

sin2 t dt =
1

2

∫ π/2

0

(sin2 t+ cos2 t) dt =
1

2

∫ π/2

0

dt =
π

4
,

where the second equality is based on the substitution x = sin t and the third equality, on the
substitution x = cos t; the fifth equality follows by taking the arithmetic mean of the third and the

fifth members of these equalities. That is, the inequality
∫ 1

0
f(x) dx ≤ π/4 cannot be improved.
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