
All Problems on Prize Exam

Spring 2014

The source for each problem is listed below when available; but even when the source is given,
the formulation of the problem may have been changed. Solutions for the problems presented here
were obtained without consulting sources for these solutions even when available, and additional
information on how to solve these problems might be obtained by consulting the original sources.
There was some overlap between the problems on the Junior and Senior prize exams; the problems
common to both exams are listed only once.

1) (JUNIOR 1 and SENIOR 1) Given a positive integer n, show that n3 + 5n is divisible by 6.
Solution: The assertion is true for any integer n, positive or negative. Indeed, we have

n3 + 5n = (n3 − n) + 6n = (n− 1)n(n+ 1) + 6n.

Among the three consecutive integers n− 1, n, and n+ 1, there must be one that is divisible by 2,
and also one that is divisible by 3.

2) (JUNIOR 2 and SENIOR 2) Show that there are no four consecutive integers (i.e., integers
of form n, n + 1, n + 2, n + 3 for some n) each of which is a power with an integer exponent > 1
of an integer.

Source: Problem 947, Középiskolai Matematikai Lapok Vol. XVIII, No. 1 (1959), p. 29, pro-
posed by Paul Erdős; see

http://db.komal.hu/scan/1959/01/95901029.g4.png

Solution: Among the four consecutive integers, there will be one that is divisible by 2 and not
divisible by 4. That number cannot be a power of another integer with an exponent > 1.

3) (JUNIOR 3 and SENIOR 3) Let a, b, c, d, p, and q be positive integers satisfying ad− bc = 1
and a/b > p/q > c/d. Prove that q ≥ b+ d.1

Source: Problem 2 on the IberoAmerican International Mathematical Competition, 1988. See
http://www.artofproblemsolving.com/Forum/resources.php

Solution: We have cq < pd. Since both sides are integers, we in fact have cq + 1 ≤ pd, and so

bcq + b ≤ pdb.

Similarly, pb < aq, and therefore pb+ 1 ≤ aq; hence

pbd+ d ≤ adq.

Combining the two displayed inequalities, we obtain

bcq + b+ d ≤ adq.

Finally, noting that ad = bc+ 1, this implies that

bcq + b+ d ≤ bcq + q,

All computer processing for this manuscript was done under Debian Linux. The Perl programming language was
instrumental in collating the problems. AMS-TEX was used for typesetting.

1By mistake, the our earlier formulation of the problem omitted d from the list of positive integers, and the text
said: Let a, b, c, p, and q be positive integers satisfying ad− bc = 1 and a/b > p/q > c/d. Prove that q ≥ b+ d.
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whence q ≥ b+ d follows.

4) (JUNIOR 4) Let n ≥ 0 be an integer. Show that 3n + 1 is not divisible by 8.
Solution: We have 32 ≡ 1 mod 8; raising this the the power k, where k ≥ 0 is an integer, we

obtain 32k ≡ 1 mod 8. Multiplying this by 3, we can see that 32k+1 ≡ 3 mod 8. Hence 3n+1 ≡ 4
mod 8 if n is even, and 3n + 1 ≡ 2 mod 8 if n is odd.

5) (JUNIOR 5) Let n and k be positive integers. Find the number of k element subsets of the
set {1, 2, . . . , n} that contain no consecutive integers (two integers are called consecutive if there
difference is 1).

Source: Based on Problem 4(a), Mathematics Qualifying Examination in Combinatorics, Ari-
zona State University, December 2011; see

http://math.asu.edu/degree-programs/past-qualifying-examinations

Solution: Let A = {a0, a1, . . . , ak−1} be a k-element subset of {1, 2, . . . , n} such that no
two elements of it are consecutive, with its elements listed in increasing order. Then the set
f(A) = {ai − i : 0 ≤ i ≤ k − 1} is a subset of {1, 2, . . . , n− k + 1}. The mapping f is a one-to-one
mapping of the set of all k-element subsets of {1, 2, . . . , n} with no consecutive elements onto the
set of all k-element subsets of {1, 2, . . . , n − k + 1}. The number of elements of the latter set is
(

n−k+1
k

)

; in case k > n− k + 1, this binomial coefficient is taken to be 0. This is also the number
of elements of the former set.

6) (JUNIOR 6) Given an integer n > 0, show that

n
∑

k=0

(

2n

2k

)

3k

is divisible by 2n Problem B. 3489, Középiskolai Matematikai Lapok 2001/7, p. 424,
Source:

http://db.komal.hu/scan/2001/10/MAT0107.PS.png.38

Solution: We have

n
∑

k=0

(

2n

2k

)

3k =

2n
∑

l=0

(

2n

l

)

(
√
3)l +

2n
∑

l=0

(

2n

l

)

(
√
3)l(−1)l.

Noting that (−1)l = (−1)2n−l, according to the Binomial Theorem the right-hand side equals

(
√
3 + 1)2n + (

√
3− 1)2n = ((

√
3 + 1)2)n + ((

√
3− 1)2)n

= (4 + 2
√
3)2 + (4− 2

√
3)n = 2n

(

(2 +
√
3)n + (2−

√
3)n
)

.

Another application of the binomial theorem shows that the expression multiplied by 2n on the
right-hand side is an integer:

(2 +
√
3)n + (2−

√
3)n =

n
∑

l=0

(

n

l

)

2n−l(
√
3)l +

n
∑

l=0

(

n

l

)

2n−l(−
√
3)l

=

⌊n/2⌋
∑

k=0

(

n

2k

)

2n−2k3k.
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Hence the number above is indeed divisible by 2n.

7) (JUNIOR 7) Assume that for a triangle with angles α, β, and γ, we have

sin γ = cosα+ cosβ.

Show that α or β must be a right angle.
Source: Problem 1467, Középiskolai Matematikai és Fizikai Lapok Vol. XV, No. 3 (1938),

Problem 1467, p. 81,
http://db.komal.hu/scan/

http://db.komal.hu/scan/1938/11/93811081.g4.png

(in Hungarian).
Solution: We have α+ β + γ = π, so γ = π − α = β. That is, we have

sin(π − α− β) = cosα+ cosβ.

As sin(π − α− β) = sin(α+ β) = sinα cosβ + cosα sinβ, we have

sinα cosβ + cosα sinβ = cosα+ cosβ,

i.e.,
− cosβ(1− sinα) = cosα(1− sinβ).

This is certainly true if α = π/2 or if β = π/2, since both sides are zero in either of these cases.
Assuming that this is not the case, and given that 0 < α < π and 0 < β < π (since α and β are

angles of a triangle), we will show that this equality cannot hold. In fact, assuming it holds, we
have

cosα

1− sinα
= − cosβ

1− sinβ
,

that is,
cosα

1− sinα
=

cos(π − β)

1− sin(π − β)
,

Since we have α + β < π, α > 0, and β > 0, we may assume here that 0 < α < π/2; namely, all
our equations are symmetric in α and β. The left-hand side is positive in this case; in order for the
right-hand side also to be positive, we must have 0 < π − β < π/2. Now, the function

f(x) =
cosx

1− sinx

in increasing in the interval (0, π/2), as we will show below, so the above equation can hold only
in case α = π − β, which is of course impossible, since α+ β = π − γ < π.

To show that f increasing in the interval (0, π/2), one may observe that

f ′(x) =
− sinx(1− sinx)− cosx(− cosx)

(1− sinx)2
=

cos2 x+ sin2 x− sinx

(1− sinx)2

=
1− sinx

(1− sinx)2
=

1

1− sinx
> 0 if 0 < x <

π

2
.
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Another way to show that f increasing in the interval (0, π/2) proceeds by noting that

f(t− π/2) =
cos(t− π/2)

1− sin(t− π/2)
=

cos(π/2− t)

1 + sin(π/2− t)
=

sin t

1 + cos t
= tan

t

2
.

Hence, putting t = x+ π/2 we obtain

f(x) = tan
x+ π/2

2
.

The right-hand side is clearly increasing in any interval where it is is continuous, showing that f is
indeed increasing in the interval (0, π/2).

8) (SENIOR 4) Show that
∫ 1

−1

ln(x+
√

1 + x2) dx = 0.

Source: Simplified version of a problem on the final of the Estonian Mathematical Olympiad,
1999. See Problem A29.5 at

http://matek.fazekas.hu/portal/feladatbank/gyujtemenyek/Nem/AF29.htm

Solution: Writing f(x) for the integrand, it is easy to show that the integrand is an odd
function, that is f(−x) = −f(x). Indeed, we have

(x+
√

1 + x2)(−x+
√

1 + (−x)2) = (1 + x2)− x2 = 1,

and so f(x) + f(−x) = 0. Hence
∫ 1

−1
f(x) dx = 0.

Note. One may also observe that the indefinite integral

∫

ln(x+
√

1 + x2) dx

is not difficult to calculate. Using integration by parts, we have

∫

ln(x+
√

1 + x2) dx =

∫

1 · ln(x+
√

1 + x2) dx

= x ln(x+
√

1 + x2)−
∫

x
1 + x/

√
1 + x2

x+
√
1 + x2

dx = x ln(x+
√

1 + x2)−
∫

x√
1 + x2

dx

Using the substitution t =
√
1 + x2, dt = 2x, dx, we obtain

∫

x√
1 + x2

dx =

∫

1

2
√
t
dt =

√
t+ C =

√

1 + x2 + C.

Hence
∫

ln(x+
√

1 + x2) dx = x ln(x+
√

1 + x2)−
√

1 + x2 + C.

One can use this result to obtain the solution of the problem.
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9) (SENIOR 5) For a given integer n ≥ 2, place n red points and n blue points in a row. A
place between two adjacent points will be called an even split if cutting the row at that place will
leave the same number of red and blue points to the left of the cut. Show that the number of color
arrangements with exactly one even split is twice the number of color arrangements with no even
split.

Source: Problem 1, József Kürschák Mathematical Competition, Hungary, 1972. See
http://matek.fazekas.hu/list.php?what=competition

(in Hungarian).
Solution: In counting the color arrangements, individual points of the same color are not

distinguished. In the original formulation of the problem, boys and girls in a class room are
mentioned, where in counting the arrangements, it is natural to distinguish between persons. This,
however, does not affect the question being asked; each color arrangement corresponds to (n!)2

person arrangements, where the girls and boys are permuted among themselves.
In solving problem, yet a third interpretation will prove useful. Consider walks consisting of 2n

moves in the coordinate plane as follows. A walk starts out at the point (0, 0), it ends at the point
(2n, 0), and each move takes one from a point (k, l) either to the point (k + 1, l + 1), called an up

move, or to the point (k+1, l−1), called a down move. We need to show that the number of walks
that meet the x axis between its starting and ending points exactly once is twice the number of
walks that do not meet the x axis.

In counting these walks, let An be the number of walks that always stay above the x axis (except
at the starting and ending points), let Bn be the number of those that never go below the x axis,
and let Cn be the number of those that meet the x axis exactly once, and never goes below the x
axis.

The number of those walks that never meet the x axis is 2An (those walks that always stay
above the x axis, and their reflections with respect to the x axis), and those that meet the x axis
exactly once is 4Cn; this is so, because for a walk that meets the x axis exactly once but otherwise
stays above the x axis, we can independently decide to reflect or not to reflect the part before the
meeting point, and after the meeting point, with respect to the x axis. Thus, we need to show that
An = Cn for n ≥ 2.

In counting these walks, we can relax the restriction n ≥ 2, and allow any n ≥ 0. We have
A0 = B0 = 1 and C0 = 0. Further, we have

An = Bn−1 (n ≥ 1),

because a walk that stays always above the x axis must start with an up move, end with a down
move, and the part of the walk between the points (1, 1) and (2n− 1, 1) never goes below the line
x = 1. Next, we have

Bn =
n
∑

k=1

AkBn−k (n ≥ 1).

Here, the term AkBn−k represents those walks that first touch the x axis at the point (2k, 0); before
this point, it stays above the x axis, and never goes below the x axis after this point. For this, it
is important that we put B0 = 1, which is needed in case k = n. Finally,

Cn =

n−1
∑

k=1

AkAn−k (n ≥ 1).
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Here, the term AkAn−k represents those walks that touch the x axis at the point (2k, 0), and stays
above the x axis before and after this point. While this last calculation does not make much sense
in case n = 1, it correctly gives the result C1 = 0, the sum being the empty sum in this case.

Hence, using these displayed equations, for n ≥ 2 we have

An = Bn−1 =
n−1
∑

k=1

AkBn−1−k =
n−1
∑

k=1

AkAn−k = Cn,

establishing the equality An = Cn.

Note: Using the above formulas, it is possible to obtain an expression for Bn. According to the
first and second displayed formulas above, we have

Bn =
n
∑

k=1

Bk−1Bn−k = Bn =
n−1
∑

j=0

BjBn−1−j (n ≥ 1),

where, to obtain the second equality, we wrote j = k − 1. Writing

f(x) =
∞
∑

n=0

Bnx
n,

and assuming that the series on the right-hand side has a positive radius of convergence, noting
that B0 = 1, by the recursive formula above we obtain

f(x) = 1 + x
∞
∑

m=1

xmBm+1 = 1 + x
∞
∑

m=1

xm
m
∑

j=0

BjBm−j = 1 + x(f(x))2

inside the interval of convergence of the series of f(x); the function f is called the generating

function of the sequence of the numbers Bn. Thus,

x(f(x))2 − f(x) + 1 = 0.

Solving this equation for f(x), we obtain

f(x) =
1±

√
1− 4x

2x
.

Noting that f(x) is bounded in a neighborhood of x = 0, we must have the − sign in the ± in this
formula. Using the binomial series

(1 + t)α =
∞
∑

n=0

(

α

n

)

xn (|x| < 1),

where
(

α

n

)

=

n−1
∏

k=0

α− k

k + 1
=

1

n!

n−1
∏

k=0

(α− k) (n ≥ 0),
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for |4x| < 1 we obtain

f(x) =
1

2x
(1− (1− 4x)1/2) =

1

2x

(

1−
∞
∑

n=0

(

1/2

n

)

(−4x)n

)

=
∞
∑

n=1

(

1/2

n

)

(−1)n+122n−1xn−1

=
∞
∑

m=0

(

1/2

m+ 1

)

(−1)m22m+1xm,

where, to obtain the last equality, we took m = n − 1. Expressing the binomial coefficient as a
product, we further obtain

f(x) =
∞
∑

m=0

1

(m+ 1)!

(

m
∏

k=0

(

1

2
− k

)

)

(−1)m22m+1xm

=
∞
∑

m=0

1

(m+ 1)!

(

m
∏

k=1

(

k − 1

2

)

)

1

2
· 22m+1xm =

∞
∑

m=0

2mxm

(m+ 1)!

m
∏

k=1

(2k − 1) .

Noting that the radius of convergence of this series is indeed positive, as our assumption requires
for the power series representing f(x),2 it follows that

Bm =
2m

(m+ 1)!

m
∏

k=1

(2k − 1) (m ≥ 0).

10) (SENIOR 6) Suppose that {an}∞n=1 is a sequence of real numbers such that
∑∞

n=1 anbn
converges for every sequence {bn}∞n=1 satisfying

∑∞
n=1 |bn| < +∞. Show that the sequence {an}∞n=1

is bounded.
Source: Problem 6, Real Analysis Comprehensive Exam, August 2011, Oklahoma State Uni-

versity. See
https://www.math.okstate.edu/node/724

Solution: Assume that the sequence {an}∞n=1 satisfies the assumptions given above, and yet it
is not bounded. Let f be an increasing function from the set of positive integers into the set of
positive integers such that |af(n)| > n2. Let bf(n) = 1/n2 for all n, and bm = 0 for all positive

integers m not in the range of the function f . Then
∑∞

n=1 |bn| =
∑∞

n=1 1/n
2 is convergent, and yet

∑∞
n=1 anbn is divergent, since the sequence {anbn}∞n=1 does not converge to zero. This contradicts

our assumptions, establishing the claim in the problem.

11) (SENIOR 7) Let P (x) be a polynomial of degree n for which P (x) ≥ 0 for all real numbers
x. Prove that

n
∑

k=0

P (k)(x) ≥ 0

for all real numbers x.

2The easiest way to establish that this series has a positive radius of convergence is by noting that the radius
of convergence of the binomial series is 1, though it is not too difficult to establish this from the last expression
obtained for f(x). The radius of convergence of this series is 1/4. In effect we said this much when we mentioned
that the expression obtained for f(x) is valid for |4x| < 1.
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Source: Problem 10 on the Sixth Annual Iowa Collegiate Mathematics Competition, April 1,
2000. See

http://sections.maa.org/iowa/Activities/Contest/Problems/Probs00.htm

for the particular competition, and see
http://sections.maa.org/iowa/Activities/Contest/

for the Iowa Collegiate Mathematics Competition.
Solution: Writing

Q(x) =
n
∑

k=0

P (k)(x) ≥ 0,

we have

Q′(x)−Q(x) =
n
∑

k=0

P (k+1)(x)−
n
∑

k=0

P (k)(x)

= P (n+1)(x)− P (x) = −P (x).

Hence
(e−xQ(x))′ = e−x(Q′(x)−Q(x)) = −e−xP (x),

and so for any real numbers x and x0 we have

e−xQ(x) = e−x0Q(x0) +

∫ x0

x

e−tP (t) dt.

Observe that the leading coefficient of P (x) is positive; if it were negative, P (x) would be negative
for large positive x. The leading coefficient of Q(x) being the same as that of P (x), it follows that
Q(x0) > 0 provided that x0 is large enough. Now, given x, choose x0 > x such that Q(x0) > 0;
then it follows from the last displayed formula that Q(x) > 0, which is what we wanted to show.
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