Junior Prize Exam Spring 2014

- 1) Given a positive integer n, show that $n^3 + 5n$ is divisible by 6.
- 2) Show that there are no four consecutive integers (i.e., integers of form n, n + 1, n + 2, n + 3 for some n) each of which is a power with an integer exponent > 1 of an integer.
- 3) Let a, b, c, d, p, and q be positive integers satisfying ad bc = 1 and a/b > p/q > c/d. Prove that $q \ge b + d$.
 - 4) Let $n \ge 0$ be an integer. Show that $3^n + 1$ is not divisible by 8.
- 5) Let n and k be positive integers. Find the number of k element subsets of the set $\{1, 2, \ldots, n\}$ that contain no consecutive integers (two integers are called consecutive if there difference is 1).
 - 6) Given an integer n > 0, show that

$$\sum_{k=0}^{n} \binom{2n}{2k} 3^k$$

is divisible by 2^n

7) Assume that for a triangle with angles α , β , and γ , we have

$$\sin \gamma = \cos \alpha + \cos \beta.$$

Show that α or β must be a right angle.

SOON AFTER THE EXAM, SOLUTIONS WILL APPEAR ON THE WEB SITE http://www.sci.brooklyn.cuny.edu/~mate/prize/2014/

All computer processing for this manuscript was done under Debian Linux. The Perl programming language was instrumental in collating the problems. \mathcal{AMS} -TEX was used for type setting.

¹By mistake, the our earlier formulation of the problem omitted d from the list of positive integers, and the text said: Let a, b, c, p, and q be positive integers satisfying ad - bc = 1 and a/b > p/q > c/d. Prove that $q \ge b + d$.