
All Problems on the Prize Exams

Spring 2015

The source for each problem is listed below when available; but even when the source is given,
the formulation of the problem may have been changed. Solutions for the problems presented here
were obtained without consulting sources for these solutions even when available, and additional
information on how to solve these problems might be obtained by consulting the original sources.
The Junior Prize Exam was not given this year.

1) (SENIOR 1) Let p be a prime number, and let r be the remainder when p is divided by 30.
Show that r is also prime or r = 1.

Source: Problem 81, Középiskolai Matematikai Lapok, Vol. IV, No. 11 (1952), p. 124. See
http://db.komal.hu/scan/1952/11/95211124.g4.png

Solution: We may assume that p > 30; otherwise, we would have r = p, and p is a prime. We
have r = p− 30q for some integer q; further 0 ≤ r < 30. The prime divisors of 30 are 2, 3, and 5;
since none of these is a divisor of p, they cannot be a divisor of r either. Thus, unless r = 1, the
smallest prime divisor of r is ≥ 7. Unless r = 1 or r is this prime itself, we must have r ≥ 72 = 49.
Since r < 30, this is not possible; so, indeed, r = 1 or else is a prime.

2) (SENIOR 2) Given real numbers a, b, and c, show that

a2 + b2 + c2 ≥ ab+ bc+ ca.

Source: Problem 31, Középiskolai Matematikai és Fizikai Lapok, Vol. I, No. 3 (1925), p. 40.
See

http://db.komal.hu/scan/1925/04/92504040.g4.png

Solution: We have

0 ≤ (a− b)2 + (b− c)2 + (c− a)2 = 2(a2 + b2 + c2 − ab− bc− ca),

whence the assertion follows. Clearly, equality holds only in case a = b = c.

3) (SENIOR 3) Given six consecutive integers, show that there is one among them that is
relatively prime to all others. (Two integers are called relatively prime if their greatest common
divisor is 1.)

Source: Problem 2, first category, round 2 for 10th grades, Daniel Arany Mathematics Compe-
tition, 1960. See

Source:

http://versenyvizsga.hu/external/vvszuro/vvszuro.php

Solution: The difference of any two among six consecutive integers is at most 5. Since the
greatest common divisor of two numbers also divides their difference, the only prime factors that
the greatest common divisor of these two integers can have are 2, 3, and 5. So, in order to find a
number among the six that is relatively prime to the others, we only need to find one number that
is not divisible by 2, 3, and 5.

There is one among the six numbers, say n, that is divisible by 6. Then none of the numbers
n−1, n−5, n+1, and n+5 is divisible by 2 or 3, and least two of them is among the six consecutive
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numbers. Among these two, only one can be divisible by 5, since the difference only of n + 5 and
n− 5 among them is divisible by 5, and not both of these numbers are among the six consecutive
numbers. Thus, there will be one number among n− 1, n− 5, n+1, and n+5 that is not divisible
by 5 and is among the six consecutive numbers. This number will be relatively prime to all the
others.

4) (SENIOR 4) Let n be a positive integer, and let a1, a2, . . . , an be real numbers. Write

f(x) =

n
∑

k=1

ak sin kx.

Assume that |f(x)| ≤ |x| for all x > 0. Prove that |
∑n

k=1 kak| ≤ 1.
Source: Based on Problem 4, APICS (Atlantic Provinces Council on the Sciences, Canada)

Mathematics Contest 1993. See
http://www.math.unb.ca/apics.papers/93/93.html

Solution: We have

lim
x→0

sin cx

x
= c

for any real c. Hence

lim
x→0

f(x)

x
=

n
∑

k=1

kak.

In view of the inequality |f(x)| ≤ |x|, the absolute value of the right-hand side must be less than
or equal to 1, establishing the result.

5) (SENIOR 5) Let an ≥ 0 for all n ≥ 1 and assume that

1

n

n
∑

k=1

ak ≥
2n
∑

k=n+1

ak

for n ≥ 1. Show that
∑

∞

k=1 ak is convergent and its sum is less than 2ea, where e is the base of the
natural logarithm.

Source: Problem 6, Schweitzer Miklós Emlékverseny (Miklós Schweitzer Memorial Competi-
tion), Hungary 1958. See

http://www.versenyvizsga.hu/

Solution: We claim that we have

(1)
2n
∑

k=1

ak ≤ a1

n−1
∏

k=0

(

1 + 2−k
)

for all n ≥ 0. This is easy to show by induction on n. Indeed, for n = 0 this just says a1 ≤ a1,
since in this case the product on the right-hand side is empty, and the value of the empty product
is 1 by convention. So let n ≥ 1 and the assume that (1) is true for this n.

By the assumption of the problem, we have

2−n

2n
∑

k=1

ak ≥

2n+1

∑

k=2n+1

ak,
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and so

(2)
(

1 + 2−n
)

2n
∑

k=1

ak ≥

2n+1

∑

k=1

ak.

By (1) and (2) we have

a1

n
∏

k=1

(

1 + 2−k
)

=
(

1 + 2−n
)

a1

n−1
∏

k=1

(

1 + 2−k
)

≥
(

1 + 2−n
)

2n
∑

k=1

ak ≥
2n+1

∑

k=1

ak;

the first inequality holds by (1), and the second one by (2). This completes the induction, estab-
lishing (1).

If a1 = 0, the assertion of the problem immediately follows from (1), so assume that a1 > 0.
Writing log x for the natural logarithm of x and using the inequality log(1 + x) < x, valid for all
x > 0, by (1) we have

log
2n+1

∑

k=1

ak ≤ log a1 +
n−1
∑

k=0

log
(

1 + 2−k
)

< log a1 + log 2 + log

(

1 +
1

2

)

−
1

2
+

∞
∑

k=1

2−k

= log a1 + log 2 + log

(

1 +
1

2

)

−
1

2
+ 1

for n > 2, where the −1/2 in the second line cancels out the term of the sum for k = 1, which is
not needed since the first two terms of the second sum in the first line are explicitly written out.
Thus

log

∞
∑

k=1

ak ≤ log a1 + log 2 + log

(

1 +
1

2

)

−
1

2
+ 1.

As log(1 + 1/2) ≤ 1/2, the inequality
∞
∑

k=1

ak < 2ea1.

follows.

6) (SENIOR 6) Let n > 0 be an integer. Consider a polynomial in n variables with real
coefficients. We know that if every variable is ±1, the value of the polynomial is positive or
negative according as the number of variables having value −1 is even or odd. Prove that the
degree of this polynomial is at least n.

Source: Problem 2, József Kürschák Mathematical Competition, Hungary, 1995. See
http://www.artofproblemsolving.com/Forum/resources.php

Click on Hungary under the heading National and Regional competitions.
Solution: We may assume that the polynomial is symmetric in its variables. In fact, if the

polynomial is R(x1, x2, . . . , xn), we can take the polynomial

Q(x1, x2, . . . , xn) =
∑

σ

R(xσ(1), xσ(2) . . . , xσ(n)),
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instead, where σ runs over all permutations of {1, 2, . . . , n} (i.e., all one-to-one mappings of this
set onto itself). We may also assume that for any i with 1 ≤ i ≤ n, xi occurs in each term of
Q(x1, x2, . . . , xn) with exponent 0 or 1. Indeed, in every term we can replace xl

i with 1 is l is even
and with xi if l is odd; this will not change the value of Q(x1, x2, . . . , xn) for xi = ±1. In this way,
the degree of Q(x1, x2, . . . , xn) will be at most n. We are going to show that there is a polynomial
P (x) such that

P
(

n
∑

i=1

xi

)

= Q(x1, x2, . . . , xn)

whenever xi = ±1 for all i with 1 ≤ i ≤ n, and, further, the degree of P is not higher than
that of Q. Such a polynomial P can easily be constructed by recursion. Assume P0(x) = 0 and
Q0(x1, x2, . . . , xn) = Q(x1, x2, . . . , xn). At the kth step, we will eliminate all terms of degree n−k
from Qk and introduce a corresponding term of degree n−k into P , while preserving the symmetry
of the polynomial Qk.

So, assume that Pk(x) and Qk(x1, x2, . . . , xn) have already been constructed for some k with
0 ≤ k ≤ n, and the degree of Qk(x1, x2, . . . , xn) is at most n − k; and, further, the exponent of
each occurrence of xi in this polynomial for i with 1 ≤ i ≤ n is 0 or 1. Let ck be the coefficient

of the term
∏n−k

i=1 xi in this polynomial for some constant ck (possibly ck = 0), and let Pk+1(x) =
Pk(x) + ckx

n−k. Consider the polynomial

Qk(x1, x2, . . . , xn)− ck

(

n
∑

i=1

xi

)n−k

.

In this polynomial, replace all occurrences of xl
i with 1 if l is even, and with xi if l is odd, and call

the resulting polynomial Qk+1(x1, x2, . . . , xn). The degree of this polynomial is at most n− k − 1
(zero being the degree of a nonzero constant polynomial, and −1 being the degree of the identically
zero polynomial), and

Pk

(

n
∑

i=1

xi

)

+Qk(x1, x2, . . . , xn) = Pk+1

(

n
∑

i=1

xi

)

+Qk+1(x1, x2, . . . , xn)

whenever xi = ±1. For k = n+ 1 we will have Qn+1(x1, x2, . . . , xn) = 0 and

Pn+1

(

n
∑

i=1

xi

)

= Q(x1, x2, . . . , xn)

whenever xi = ±1 (1 ≤ i ≤ n). For k with 0 ≤ k ≤ n, taking xi = −1 for i ≤ k and xi = 1 for
i > k, we therefore have P (n−2k) = (−1)k. This means that P (x) has at least n sign changes, and
so it has at least n (real) zeros. Therefore, the degree of P (x) is at least n, completing the proof.

7) (SENIOR 7) Prove that the equation y′ = y2 + x, y(0) = 0 does not have a solution on the
interval (0, 3).

Source: Ural State University- DMM Olympiad, 2005, Problem 13.
http://www.artofproblemsolving.com/Forum/resources.php

Click on the last item in the middle column, with the heading Undergraduate Competitions.
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Solution: Assuming y(x) is such a solution, we have

y(x) =

∫ x

0

(

(

y(t)
)2

+ t
)

dt ≥

∫ x

0

t dt =
x2

2
≥ 0.

On the other hand,
y′

y2 + x
= 1,

and so
y′

y2 + 1
≥ 1 for x ≥ 1.

Integrating this on the interval [1, x] for x > 1 we obtain

∫ x

1

y′(t)
(

y(t)
)2

+ 1
dt =

∫ y(x)

y(1)

dy

y2 + 1
= arctan y(x)− arctan y(1)

≥

∫ x

1

1 dt = x− 1.

Noting that y(1) ≥ 0 and so arctan y(1) ≥ 0 and arctan y(x) ≤ limy→∞ arctan y = π/2, this
inequality implies that x − 1 ≤ π/2, and so x ≤ 1 + π/2 < 3. Hence there is no function y(x)
with y(0) = 0 that is continuous at 0 and satisfies the differential equation y′ = y2 + x on the
interval (0, 3).
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