
All Problems on the Prize Exams
Spring 2016

The source for each problem is listed below when available; but even when the source is given,
the formulation of the problem may have been changed. Solutions for the problems presented here
were obtained without consulting sources for these solutions even when available, and additional
information on how to solve these problems might be obtained by consulting the original sources.
There was some overlap between the problems on the Junior and Senior prize exams; the problems
common to both exams are listed only once.

1) (JUNIOR 1 and SENIOR 1) Let n be a positive integer. Show that

3010n+1 + 521n

is divisible by 31.
Source: Problem 1975, Középiskolai Matematikai Lapok, Vol. 18/2, October 1910, p. 3

http://db.komal.hu/scan/1910/10/91010025.g4.png

Solution: The proof of the assertion can perhaps be described in the language of congruences
the simplest. Given integers a, b, and c, we say that a is congruent to b modulo c, in notation

a ≡ b mod c,

if b − a is a multiple of c (or, in other words, b − a is divisible by c). Here some authors assume
that c ≥ 2, though this assumption is unnecessary.1

For any integers m > 0, a, b, and c we have

(ac+ b)m ≡ bm mod c.

This easily follows from the basic properties of congruences, but even without using these properties,
one can see this directly by noting that in the binomial expansion of (ac+ b)m every term except
bm contains c as a factor. Using this, we have

3010n+1 + 521n = (31− 1)10n+1 + (53)7n = (31− 1)10n+1 + (4 · 31 + 1)7n

≡ (−1)10n+1 + 17n ≡ −1 + 1 ≡ 0 mod 31,

establishing the assertion.2

2) (JUNIOR 2 and SENIOR 2) Write α, β, and γ for the roots of the equation

x3 − 5x2 − 9x+ 45 = 0.

All computer processing for this manuscript was done under Debian Linux. The Perl programming language was
instrumental in collating the problems. AMS-TEX was used for typesetting.

1The case of negative c is not interesting, since a ≡ b mod c means the same as a ≡ b mod (−c). The case c = 1
is not interesting, since a ≡ b mod 1 is true for any integers a and b. Finally, the case c = 0 is not interesting, since
a ≡ b mod 0 means the same as a = b. Nevertheless, statements of a number of results about congruences becomes

unnecessarily more complicated if one requires that c ≥ 2.
2Note that in the last displayed line, the last two ≡ symbols could be replaced with =; however, we did not want

to surround the symbol ≡ with equality symbols. So, after the first use of the symbol ≡, we continued to use the
symbol ≡.
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Given that we know that β = −α, find the roots of the equations.
Source: Problem 1434, Középiskolai Matematikai Lapok, Vol. XIII.3, November 1905, p. 58.

See
http://db.komal.hu/scan/1905/11/90511058.g4.png

Solution: We have

x3 − 5x2 − 9x+ 45 = 0 = (x− α)(x− β)(x− γ) = (x− α)(x+ α)(x− γ)

= (x2 − α2)(x− γ) = x3 − γx2 − α2x+ α2γ.

Equating the coefficients on the sides, this gives α = ±3 and γ = 5. The choice α = 3 and α = −3
leads to the same result (i.e., that both 3 and −3 are roots of the equation). That is, the roots of
the equation are 3, −3, and 5.

3) (JUNIOR 3 and SENIOR 3) When is the sum of the cubes of three consecutive integers (i.e.,
integers that are adjacent, or following one another) divisible by 18?

Source: Problem 1, second category, round 1 for grades 11–12, Daniel Arany Mathematics
Competition, 1949. See

http://versenyvizsga.hu/external/vvszuro/vvszuro.php

Solution: Let the integers be n− 1, n, and n+ 1. Then

(n− 1)3 + n3 + (n+ 1)3 = 3n3 + 6n = 3n(n2 + 2).

In order for this to be divisible by 18, we need to make sure that n(n2 + 2) is divisible by 6. Since
n and n2 + 2 have the same parity, n(n2 + 2) is divisible by 2 if and only if n is even.

On the other hand, n(n2 + 2) is always divisible by 3. Indeed, this is certainly the case if n is
divisible by 3. Assume this is not the case. Then n = 3k ± 1 for some k, and so

n2 + 2 = (9k2 ± 6k + 1) + 2 = 9k2 ± 6k + 3,

which is divisible by 3. So
(n− 1)3 + n3 + (n+ 1)3

is divisible by 18 if and only if n is even. In other words, the sum of the cubes of three consecutive
integers is divisible by 18 if and only if the middle number is even.

Note: To show that n2 + 2 is divisible by 3 in case n is not divisible by 3, one can also argue
that n2 + 2 = (n2 − 1) + 3 is divisible by 3 according to the following

Theorem (Fermat). Let p be a prime and let n be and integer not divisible by p. Then np−1 − 1
is divisible by p.

4) (JUNIOR 4) At a gathering, call a person an outsider if he or she knows at most three other
persons at the gathering (knowing a person is mutual, that is, if A knows B then B also knows A).
Show that if each person knows at least three outsiders, then everybody is an outsider.

Source: Problem Gy.3214 Középiskolai Matematikai és Fizikai Lapok, Vol. 48/6., September
1998, p. 360. See

http://db.komal.hu/scan/1998/09/MAT9806.PS

Solution: Call a person an insider if he or she is not an outsider. Since each outsider knows at
most three other persons, and he or she knows at least three outsiders, he or she knows only these
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three outsiders, and so he or she does not know any insiders. Since knowing a person is mutual,
an insider does not know any outsider. So, if there were an insider at the gathering, this would
contradict the assumption that every person knows at least three outsiders.

5) (JUNIOR 5) Given a convex quadrilateral such that its two diagonals divide it into four
triangles of the same area. Prove that the quadrilateral is a parallelogram.

Source: Problem 7, first category, round 1 for 9th grades, Daniel Arany Mathematics Compe-
tition, 1971. See

http://versenyvizsga.hu/external/vvszuro/vvszuro.php

Solution: Given a convex quadrilateral ABCD, let E be the intersection of its two diagonals
AC and BD. As the areas of the triangles AEB and ADE are equal, we must have EB = ED,
since the altitudes dropped from the vertex A of these two triangles are the same. Similarly,
AE = EC. Hence the triangles AEB and CED are congruent, since their angles at E are equal,
and the corresponding two sides adjacent to E are also equal. Therefore AB = CD. The angles
ABE and CDE are also equal, so AB ‖ CD. This shows that the quadrilateral ABCD is indeed
a parallelogram.

6) (JUNIOR 6) Let p and q be prime numbers with p > q > 3. Show that p2 − q2 is divisible
by 24.

Source: Problem 1027, Középiskolai Matematikai és Fizikai Lapok, Vol. XII No. 3, p. 63 (cor-
rected minor error). See

http://db.komal.hu/scan/1935/11/93511064.g4.png

Solution: We have p2 − q2 = (p− q)(p+ q). Both p− q and p+ q are even, given that p and q
are both odd. Furthermore (p + q) − (p − q) = 2q is not divisible by 4, so one of p + q and p − q
must be divisible by 4. Hence, (p− q)(p+ q) is divisible by 8.

On the other hand, p2 − 1 is divisible by 3. Indeed, one of the numbers p− 1, p, and p+1 must
be divisible by 3. As p > 3 is a prime, p itself is not divisible by 3. Hence, p2− 1 = (p− 1)(p+1) is
divisible by 3. Similarly, q2 − 1 is divisible by 3. Therefore p2 − q2 = (p2 − 1)− (q2 − 1) is divisible
by 3. Therefore p2 − q2 is divisible by 8 · 3 = 24.

7) (JUNIOR 7) Show that from any given 7 integers one can select 4 whose sum is divisible by 4.

Source: Problem 3, category 3, 2nd round, grades 11-12, Országos Középiskolai Tanulmányi
Verseny matematikából (Hungarian National Scholarly Competition in Mathematics for Secondary
Schools), 1967. See

http://www.versenyvizsga.hu/

Solution: The seven given numbers can be replaced by their residue classes modulo 4. Then
we need to select, with repetitions, seven of the four residue classes modulo 4. There are

(

4+7−1

7

)

=
(

10

7

)

=
(

10

3

)

= 120 ways to select these residue classes, and so in principle it would be possible to
test all possible selections. The practical question is how to cut down on the number of selections
that need to be tested.

Write [x] for the residue class of the integer x modulo 4. A list of at most seven residue classes
can be represented by a four-tuple (x0, x1, x2, x3) with x0 + x1 + x2 + x3 ≤ 7, where xi represents
the number of times the residue class [i] occurs on the list. Call such a four-tuple good if one can
select four of these residue classes whose sum is [0]. Two observations are in order. If the four-tuple
(x0, x1, x2, x3) is good, then any of its cyclic permutations is also good. In fact, if we can select the
residue classes y1, y2, y3, y4 such that y1 + y2 + y3 + y4 = [0] from the residue-classes represented
by this four-tuple, then the four-tuple (x1, x2, x3, x0) represents number of times the residue classes
[0] = [1]− [1], [1] = [2]− [1], [2] = [3]− [1], and [3] = [0]− [1] occur on the corresponding list, and
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from this list we can select the residue classes y1 − [1], y2 − [1], y3 − [1], y4 − [1], whose sum is [0].
We can also reverse the above four-tuple; indeed, the four-tuple (x3, x2, x1, x0) represents number
of times the residue classes [0] = [3]− [3], [1] = [3]− [2], [2] = [3]− [1], and [3] = [3]− [0] occur on
the corresponding list, and from this list we can select the residue classes [3]− y1, [3]− y2, [3]− y3,
and [3]− y4, whose sum is [0].

We need to show that every four-tuple (x0, x1, x2, x3) with with x0 + x1 + x2 + x3 = 7 is good.
In order to do this, a simple collection of good four-tuples will help: (4, 0, 0, 0) is good, since
[0] + [0] + [0] + [0] = [0]; (2, 1, 0, 1) is good, since [0] + [0] + [1] + [3] = [0]; finally, (2, 0, 2, 0) is good,
since [0]+[0]+[2]+[2] = [0]. When considering a four-tuple (x0, x1, x2, x3) with x0+x1+x2+x3 = 7,
we say that it avoids the pattern (z0, z1, z2, z3) if at least one of the inequalities xi ≥ zi (0 ≤ i ≤ 3)
fails. In order for a four-tuple not to be good, it must avoid the three listed good patterns, as well
as all the patterns resulting from them by cyclic permutations or reversals.

Assume, on the contrary to the assertion of a problem, that a four-tuple (x0, x1, x2, x3) with
x0+x1+x2+x3 = 7 is not good. Then there is no xi with xi ≥ 4, since we need to avoid any cyclic
permutation of the pattern (4, 0, 0, 0). Hence, there must be an xi that is 2 or 3. We may assume
that i = 0; that is, x0 is 2 or 3. In order to avoid the pattern (2, 1, 0, 1), we must have x1 = 0
or x3 = 0. We may assume that x1 = 0, since the four-tuple (x0, x1, x2, x3) and (x0, x3, x2, x1)
can be transformed into each other by a reversal and a cyclic permutation (from (x0, x1, x2, x3)
we get (x3, x2, x1, x0) by reversal, and then a cyclic permutation gives (x0, x3, x2, x1)). In order to
avoid the pattern (2, 0, 2, 0), we must have x2 = 0 or x2 = 1. In case x2 = 0 we must have x3 ≥ 4
(since x0 ≤ 3 and x1 = 0), so a cyclic permutation of the pattern (4, 0, 0, 0) is not avoided. In case
x2 = 1, we must have x3 ≥ 3, and the pattern (1, 0, 1, 2) is not avoided; since this pattern is a cyclic
permutation of the pattern (2, 1, 0, 1), this shows that not all good patterns can be avoided. This
completes the proof.

8) (SENIOR 4) Find positive integers x, y, and z such that x < y < z and x2, y2, and z2 form
an arithmetic progression, and for which y is the least possible.

Source: Problem 19, Középiskolai Matematikai Lapok, Vol. 1., 1894–95, p. 24. See
http://db.komal.hu/scan/1894/00/89400024.g4.png

Solution: Write u = z − y and v = y − x. Then we have

z2 − y2 = (y + u)2 − y2 = u2 + 2uy and

y2 − x2 = y2 − (y − v)2 = −v2 + 2vy,

and so the equation z2 − y2 = y2 − x2 becomes

(1) y =
u2 + v2

2(v − u)
.

If t is a common divisor of u and v, say u = tū, v = tv̄, then this equation says that y = tȳ with

ȳ =
ū2 + v̄2

2(v̄ − ū)
.

Then with z̄ = ȳ+ū and x̄ = ȳ−v̄, and the triple x̄2, ȳ2, and z̄2 also form an arithmetic progression;
further, we also have x = tx̄, tȳ and z = tz̄. So, to obtain the triple x, y, z with y the least possible,
u and v must be relatively prime.
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Equation (1) means that v − u is a divisor of u2 + v2. As

2u2 = (u2 + v2) + (u− v)(u+ v) and

2v2 = (u2 + v2)− (u− v)(u+ v),

this means that u − v is a divisor of both 2u2 and and 2v2. The assumption that u and v are
relatively prime means that v − u = 1 or v − u = 2. The former would mean that u2 + v2 is odd,
which is not possible according to equation (1); that is, v = u+ 2. Then equation (1) becomes

2y = u2 + 2u+ 2.

This means that u must be even. The choice u = 2 gives the least possible value of y. We then
have y = 5, v = u + 2 = 4, x = y − v = 1 and z = y + 2 = 7. This gives the triple x = 1, y = 5,
and x = 7 as the triple satisfying the requirements.

9) (SENIOR 5) Given an arbitrary positive integer n, show that

√

1 +

√

2 +

√

3 + . . .+
√
n < 2.

Source: Based on Problem 2, third category, round 2 for 10th grades, Daniel Arany Mathematics
Competition, 1978. See

http://versenyvizsga.hu/external/vvszuro/vvszuro.php

The Problem cited makes the weaker assertion that the left-hand side above is less than 4.
Solution: Let xn+1 = 0, and for k with 1 ≤ k ≤ n let

xk =
√

k + xk+1.

Then x1 is equal to the expression on the left-hand side of the inequality asserted by the problem.
We are first going to show that xk ≤ k for all integers k with 3 ≤ k ≤ n+ 1. This is certainly true
for k = n+ 1. Let 3 ≤ k ≤ n, and assume that xk+1 < k + 1. Then we have

xk =
√

k + xk+1 <
√

k + (k + 1) =
√
2k + 1 < k,

where the last inequality is equivalent to k2 > 2k + 1, i.e., to (k − 1)2 > 2, which is certainly true
if k ≥ 3.

Hence x3 < 3 and so
x2 =

√
2 + x3 <

√
2 + 3 =

√
5 < 3,

and so
x1 =

√
1 + x2 <

√
1 + 3 =

√
4 = 2,

which is what we wanted to prove.

10) (SENIOR 6) For every positive integer n let f(n) > 0, and assume that for all positive
integers m and n we have f(m+ n) ≤ f(m) + f(n). Prove that the limit

lim
n→∞

f(n)

n
5



exists and equals

inf
n>0

f(n)

n
.

Source: Problem 5, Part II, Stanford University Mathematics Ph.D. Qualifying Exam in Real
Analysis, September 2006. See

http://mathematics.stanford.edu/academics/graduate/phd-program/

phd-qualifying-exams/past-qualifying-exams/

Solution: Let

(1) A = inf
n>0

f(n)

n
.

Then 0 ≤ A ≤ f(1)/1, so A is finite. Let ǫ > 0 be arbitrary, and let m > 0 be such that

f(m)

m
< A+ ǫ,

and let
B = max{f(j) : 1 ≤ j ≤ m}

(we need to allow equality on the right in case m = 1). Let n > 0 be arbitrary, and let k be an
integer such that mk ≤ n < m(k + 1). Then

f(n) = f
(

mk + (n−mk)
)

≤ kf(m) + f(n−mk) < km(A+ ǫ) +B.

Thus
f(n)

n
<

km

n
(A+ ǫ) +

B

n
≤ (A+ ǫ) +

B

n
.

Making n → ∞, we obtain

lim sup
n→∞

f(n)

n
≤ A+ ǫ.

Since ǫ > 0 is arbitrary, this together with (1) implies that

lim
n→∞

f(n)

n
= A.

11) (SENIOR 7) Find a noncommutative group G such that for all x ∈ G we have x3 = e, where
e denotes the identity element of G.

Source: David Finston, oral communication.
Solution: Such a group is formed by the upper triangular unit matrices of size 3×3 over a field

of characteristic 3.
Let n be a positive integer (for the present problem we are only interested in the case n = 3, but

the case of an arbitrary n is simple enough to discuss). An n × n matrix (aij) is called an upper

triangular matrix if aij = 0 whenever 1 ≤ j < i ≤ n. Such a matrix is called an upper triangular

unit matrix if we also have aii = 1 for all i with 1 ≤ i ≤ n (here 0 and 1 denote the zero element
and the multiplicative unit element of the field over which these matrices are considered). The
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product C = (cij) of two such matrices A = (aij) and B = (bij) is another upper triangular unit
matrix. Indeed,

cik =
n
∑

j=1

aijbjk.

In each term on the right-hand side, one of the factors is zero unless i ≤ j and j ≤ k, and so the
sum is zero unless i ≤ k. If i = k, the only way to get a nonzero sum if i = j = k, and in this case
the sum is 1.

The inverse of an upper triangular unit matrix of size n × n is again an upper triangular unit
matrix. Indeed, if A = (aij) is such a matrix, then its inverse X = (xij) can be found by solving
the equations

n
∑

j=1

aijxjk = δik,

where δik is Kronecker’s delta, i.e.,

δik =

{

1 if i = k,

0 if i 6= k,

and 1 ≤ i, k ≤ n. We have aii = 1 and aij = 0 if j < i, since A is and upper triangular unit matrix.
Stipulating that X is also an upper triangular unit matrix, i.e., that xii = 1 and xij = 0 if j < i,
the above equations are satisfied if k ≤ i, and for k > i the equations can be written as

xik = −
k

∑

j=i+1

aijxjk.

For each k with 1 ≤ k ≤ n these equations are solvable simply by determining xik for i = k − 1,
k − 2, . . . , 1 (in this order) by evaluating the right-hand side.

The simplest field of characteristic 3 is the Galois field F3. The elements of this are the integers
modulo 3, with addition and multiplication taken modulo 3. In such a field, 3x = x + x + x = 0
(this is the equation that is meant by saying that the field has characteristic 3).

Now, let F be a field of characteristic 3, and let M be the field group of upper triangular unit
matrices of size 3× 3 over F . Then the multiplication in M is not commutative. Indeed, with

A =





1 1 0
0 1 0
0 0 1



 and B =





1 0 0
0 1 1
0 0 1





we have

AB =





1 1 1
0 1 1
0 0 1



 and BA =





1 1 0
0 1 1
0 0 1



 .

If A ∈ M , the characteristic polynomial of A is (x− 1)3. By the Cayley-Hamilton theorem, A is a
zero of its own characteristic polynomial. That is, writing I for the unit matrix over F , we have3

0 = (A− I)3 = A3 − 3A2 + 3A− I = A3 − I,

3One needs to be a little cautious here. We are going to apply the Binomial Theorem for matrices. The proof
of this theorem makes use of the commutativity of multiplication; so (P + Q)n can be expressed by the Binomial
Theorem only if the matrices P and Q commute. In the present case, we will use it with P = A and Q = I, and A

and I clearly commute.
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where the last equation holds since F has characteristic 3. This equation shows that for every
A ∈ M we have A3 = I, which is what we wanted to show.

Note: For any prime p ≥ 3, a similar construction with p × p matrices shows that there is
a noncommutative group G such that xp = e for any x ∈ G. The noncommutativity of the
multiplicative group of upper triangular p × p unit matrices is shown by the two matrices which
have the 3×3 matrices A or B in the top left corners, all 1s in the main diagonal, and 0s everywhere
else.

For p = 2 this cannot be done. Indeed, if G is a group such that x2 = e for every x ∈ G, then
we have x−1 = x for all x ∈ G, and so given, a, b ∈ G, we have

ab = (ab)−1 = b−1a−1 = ba,

so such a group is necessarily commutative.
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