
All Problems on the Prize Exams

Spring 2017

The source for each problem is listed below when available; but even when the source is given,
the formulation of the problem may have been changed. Solutions for the problems presented here
were obtained without consulting sources for these solutions even when available, and additional
information on how to solve these problems might be obtained by consulting the original sources.
The Junior Prize Exam was not given this year.

1) (SENIOR 1) Show that for any integer n, the number n3 + 11n is divisible by 6.
Source: Problem 918, Középiskolai Matematikai Lapok, Vol. X1/1, September 15, 1934.

http://db.komal.hu/scan/1934/09/93409030.g4.png

Solution: We need to show that n3 + 11n is divisible both by 2 and 3. We have

n3 + 11n = n2(n+ 11).

This is clearly divisible by 2, since for even n the first factor is even, and for odd n the second
factor is so.

As for divisibility by 3, it is enough to show that

(n3 + 11n)− 3 · 4n = n3 − n = (n2 − 1)n = (n− 1)n(n+ 1)

is divisible by 3. This is certainly true, since one of the factors on the right-hand side is divisible
by 3.

2) (SENIOR 2) In a class of 34 students, there are 17 females and 17 males. Assume they are all
sitting at a round table. Show that there is at least one (male or female) student with two female
neighbors.

Source: Problem 2 Dániel Arany Mathematical Competition, round I, beginners, category I-II,
academic year 2013/2014; on p. 2 of the pdf file at the website, the academic year is misstated as
2012/1013, but the main page states it correctly. See

http://www.bolyai.hu/aranydaniel.htm

Solution: Assume there are no such students. Divide the students into maximal groups of
students of the same sex sitting next to one another. No such group of females can contain more
than two members, since otherwise there would be a female student with two female neighbors.
This means that there must be at least 9 such groups of females. As for the group of males, there
can be no group that contains only a single member, since then the member of that group would
have two female neighbors. This means that there must be at most 8 group (since 17 is an odd
number, at least one group has to have more than two members). However, the number of female
groups must be equal to the number of male groups, a contradiction. This shows that there indeed
must be a student with two female neighbors.

3) (SENIOR 3) Let p and q be positive integers, and assume that all solutions of the equations

x2 + px− q = 0 and x2 + px+ q = 0

are integers. Show that there are nonzero integers a and b such that p2 = a2 + b2.

All computer processing for this manuscript was done under Debian Linux. The Perl programming language was
instrumental in collating the problems. AMS-TEX was used for typesetting.
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Source: Based on Problem 10, Euclid Contest (Grade 12), 1998, Canadian Mathematics Com-
petition, University of Waterloo, Waterloo, Ontario, Canada. See

http://www.cemc.uwaterloo.ca/contests/past_contests.html

Solution: The discriminants of both equations must be squares of integers; therefore, there are
integers u and v such that p2 + 4q = u2 and p2 − 4q = v2. Then

2p2 = u2 + v2,

and so

p2 =

(

u+ v

2

)2

+

(

u− v

2

)2

.

Furthermore,
8q = u2 − v2,

and so u and v must have the same parity,1 so (u + v)/2 and (u − v)/2 are integers. The last
equation also show that neither of these integers is zero. Thus, p2 = a2 + b2 with the nonzero
integers a = (u+ v)/2 and b = (u− v)/2.

4) (SENIOR 4) Show that

sin
π

10
sin

3π

10
=

1

4
.

Source: Based on Problem 830, Középiskolai Matematikai Lapok, Vol. VII/10, June 1900, p.
168:

http://db.komal.hu/scan/1900/06/90006168.g4.png

Solution: Using the identity

2 sinx sin y = cos(x− y)− cos(x+ y),

we need to show that

(1) cos
π

5
− cos

2π

5
=

1

2
.

Writing

ζ = eiπ/5 = cos
π

5
+ i sin

π

5
,

we have

cos
π

5
=

ζ + ζ−1

2

and

cos
2π

5
=

ζ2 + ζ−2

2
.

That is, we need to show that

(2) −ζ2 + ζ + ζ−1 − ζ−2 = 1.

1I.e., they are either both even or they are both odd.
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To show this, we need some basic equations involving ζ. To start with, we have

(3) ζ5 = eiπ = −1.

Therefore
0 = ζ5 + 1 = (ζ + 1)(ζ4 − ζ3 + ζ2 − ζ + 1).

Noting that the first factor on the right-hand side is not zero since ζ 6= −1, the second factor must
be zero; that is

(4) −ζ4 + ζ3 − ζ2 + ζ = 1.

Using equations (3) and (4), the left-hand side of (2) equals

−ζ2 + ζ + ζ−1 − ζ−2 = ζ2 − ζ − ζ5(ζ−1 − ζ−2) = −ζ4 + ζ3 − ζ2 + ζ = 1;

the first equation holds in view of (3), and the third one in view of (4). This establishes (2).

Note: The above proof using complex roots of unity can easily be formulated geometrically
involving a regular decagon (10-gon), but the proof as presented is easier to read. We will describe
such a geometric proof.

Given a circle of radius 1 and center O, let P0, P1, . . . , P9 be the vertices of the inscribed
decagon; it is natural to make O to be the center of the coordinate system, and to put the point
P0 on the positive x-axis; that is P0 is the point with coordinates (1, 0), and then label the points
counterclockwise. Let P ′

k be the projection of Pk onto the line OP0. Equation (1) is equivalent to

saying that P ′
2P

′
1 = 1/2.

To see this, first note that OP2 ‖ P8P1. This can be seen by a simple calculation of angles: We
have ∠P8OP1 = 3π/5, and so, noting that the triangle P1OP8 is isosceles, we have

∠OP1P8 =
π − ∠P8OP1

2
=

π

5
.

Writing Q for the intersection of P8P1 and OP0, we have

∠P0QP1 = ∠P0OP1 +OP1P8 =
π

5
+

π

5
=

2π

5
= ∠P0OP2,

showing that indeed OP2 ‖ P8P1. A similar argument shows that P8P1 ‖ P9P0. Indeed,

∠OP0P9 =
π − ∠P0OP9

2
=

π − π/5

2
=

2π

5
= ∠P0OP2.

Hence, noting that P ′
2P2 = P ′

2P8 and P ′
1P1 = P ′

1P9, we can see that △OP ′
2P2 ≃ △QP2P8 and

△QP ′
1P1 ≃ △P0P

′
1P9. Thus

P ′
2P

′
1 = P ′

2Q+QP ′
1 = OP ′

2 + P ′
1P0.

Since
1 = OP ′

2 + P ′
1P0 + P ′

2P
′
1,
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it follows that

P ′
2P

′
1 =

1

2
,

as we wanted to show.

5) (SENIOR 5) Calculate the integral

∫ π

−π

x2

1 + sinx+
√

1 + sin2 x
dx.

Source: Problem 6, Stanford Math Tournament 2011, Calculus.
https://sumo.stanford.edu/smt/

Solution: Write f(x) for the integrand. We have

∫ π

−π

f(x) dx =

∫ 0

−π

f(x) dx+

∫ π

0

f(x) dx

=

∫ π

0

f(−x) dx+

∫ π

0

f(x) dx =

∫ π

0

(

f(−x) + f(x)
)

dx,

where the second equality is obtained by substituting t = −x in the first integral, then renaming
the variable to x and interchanging the limits. Noting that sin(−x) = − sinx, we have

f(x) + f(−x) =
x2

1 + sinx+
√

1 + sin2 x
+

x2

1− sinx+
√

1 + sin2 x

=
x2

(

2 + 2
√

1 + sin2 x
)

(

1 +
√

1 + sin2 x
)2

− sin2 x
=

x2
(

2 + 2
√

1 + sin2 x
)

2 + 2
√

1 + sin2 x
= x2.

Hence, the integral to be calculated is equal to

∫ π

0

x2 dx =
π3

3
.

6) (SENIOR 6) For each n ≥ 0 let

an =

∞
∑

k=0

kn

k!
and bn =

∞
∑

k=0

(−1)k
kn

k!
.

Show that anbn is an integer.
Source: Problem 3, Second Day, International Mathematics Competition for University Stu-

dents. See
http://www.imc-math.org.uk/index.php?year=2002&item=info

Solution: Write

fn(x) =

∞
∑

k=0

knxk

k!
.

4



Then an = fn(1) and bn = fn(−1). It is clear from the Taylor series of ex that f0(x) = ex.
Furthermore, it is easy to see that

x
d

dx
fn(x) = fn+1(x).

Hence it follows that
fn(x) = Pn(x)e

x,

where Pn(x) is polynomial such that P0(x) = 1 and

Pn+1(x) = x

(

Pn(x) +
d

dx
Pn(x)

)

.

It is clear that the coefficients of Pn(x) are integers, and so

anbn = fn(1)fn(−1) = Pn(1)e
1 Pn(−1)e−1 = Pn(1)Pn(−1)

is an integer for any n ≥ 0.

7) (SENIOR 7) Given real numbers ak for k ≥ 1, assume that

∞
∑

k=1

ak

converges. Prove that
∞
∑

k=1

ak
k

converges.
Source: Problem 15, p. 317, David V. Widder, Advanced Calculus, Second Edition, Dover, New

York, 1989.
Solution: The following more general result is true:

Let ak and bk for k ≥ 1 be complex numbers such that

(1) lim
k→∞

bk = 0

and

(2)
∞
∑

k=1

|bk − bk+1| < ∞.

Assume that there is a real number B such that

(3)

∣

∣

∣

∣

∣

N
∑

k=1

ak

∣

∣

∣

∣

∣

< B
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for all N ≥ 1. Then the series

(4)
∞
∑

k=1

akbk

converges.

This result is the Generalized Dirichlet Convergence Test. In the original version of the Dirichlet
Test, instead of (2) one assumes that bk is real and bk ≥ bk+1 > 0 for all k ≥ 1. The Alternating
Series Test and the statement of the problem are both consequences of the original version of the
Dirichlet Test. Indeed, one obtains the Alternating Series Test if one takes ak = (−1)k+1, and one
obtains the result stated in the problem if one takes the bk = 1/k. We will comment on the role of
the Generalized Dirichlet Test in number theory below.

To show the above result, write

cn =
n
∑

k=1

ak (n ≥ 0).

Then an = cn − cn−1, so, given integers M and N with 0 ≤ M < N we have

N
∑

n=M+1

anbn =
N
∑

n=M+1

(cn − cn−1)bn

= cNbN+1 − cMbM+1 +
N
∑

n=M+1

cn(bn − bn+1);

the last equation can be easily checked by noting that each term in the middle member is matched
by exactly one member on the right-hand side. An equation of this type is called partial summation,
or Abel rearrangement, named after the Norwegian mathematician Niels Henrik Abel. Therefore

∣

∣

∣

N
∑

n=M+1

anbn

∣

∣

∣
≤ |cNbN+1|+ |cMbM+1|+

N
∑

n=M+1

|cn||bn − bn+1|

≤ B
(

|bN+1|+ |bM+1|+

N
∑

n=M+1

|bn − bn+1|
)

(0 ≤ M < N);

the second inequality follows in view of (3). Making M → ∞, the limit of the right-hand side is 0
in view of (1) and (2). This shows that the series in (4) indeed converges.

Note. A Dirichlet series is a sum

(5)

∞
∑

n=1

ann
−s,

where the coefficients an for n ≥ 1 are given complex numbers. Johann Peter Gustav Lejeune
Dirichlet used these eponymous2 series to establish his famous result that if an arithmetic progres-
sion with integer terms contains two relatively prime integers then it contains infinitely many prime
numbers. Dirichlet considered these series only for real s; somewhat later, Georg Friedrich Bern-
hard Riemann used them with complex s in his study of prime numbers. The basic convergence
result for Dirichlet series is the following:

2I.e., series named after him (later, by others), that is, Dirichlet series.

6



If (5) converges for s = s0 with some complex s0, then it also converges for all complex s with

ℜs > ℜs0.

This is a direct convergence of the Generalized Dirichlet Test. Indeed, assume that

∞
∑

n=1

ann
−s0

converges. Then
∞
∑

n=1

ann
−s =

∞
∑

n=1

ann
−s0 n−(s−s0).

Assuming ℜ(s− s0) > 0, we have

|n−(s−s0) − (n+ 1)−(s−s0)| =

∣

∣

∣

∣

∫ n+1

n

(s− s0)t
−(s−s0)−1 dt

∣

∣

∣

∣

≤
∣

∣(s− s0)n
−(s−s0)−1

∣

∣ = |s− s0|n
−ℜ(s−s0)−1.

Since the series
∞
∑

n=1

n−ℜ(s−s0)−1

is convergent (e.g., by the Integral Test), the Generalized Dirichlet Test implies that the series
in (5) is also convergent. If we assume that s and s0 are real, the same conclusion follows also from
the original Dirichlet Test.
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