Senior Prize Exam Spring 2017

1) Show that for any integer n, the number $n^3 + 11n$ is divisible by 6.

2) In a class of 34 students, there are 17 females and 17 males. Assume they are all sitting at a round table. Show that there is at least one (male or female) student with two female neighbors.

3) Let p and q be positive integers, and assume that all solutions of the equations

$$x^{2} + px - q = 0$$
 and $x^{2} + px + q = 0$

are integers. Show that there are nonzero integers a and b such that $p^2 = a^2 + b^2$.

4) Show that

$$\sin\frac{\pi}{10} \sin\frac{3\pi}{10} = \frac{1}{4}.$$

5) Calculate the integral

$$\int_{-\pi}^{\pi} \frac{x^2}{1 + \sin x + \sqrt{1 + \sin^2 x}} \, dx.$$

6) For each $n \ge 0$ let

$$a_n = \sum_{k=0}^{\infty} \frac{k^n}{k!}$$
 and $b_n = \sum_{k=0}^{\infty} (-1)^k \frac{k^n}{k!}.$

Show that $a_n b_n$ is an integer.

7) Given real numbers a_k for $k \ge 1$, assume that

$$\sum_{k=1}^{\infty} a_k$$

converges. Prove that

$$\sum_{k=1}^{\infty} \frac{a_k}{k}$$

converges.

SOON AFTER THE EXAM, SOLUTIONS WILL APPEAR ON THE WEB SITE http://www.sci.brooklyn.cuny.edu/~mate/prize/2017/

All computer processing for this manuscript was done under Debian Linux. The Perl programming language was instrumental in collating the problems. A_{MS} -T_EX was used for typesetting.