
All Problems on the Prize Exams

Spring 2018

The source for each problem is listed below when available; but even when the source is given,
the formulation of the problem may have been changed. Solutions for the problems presented here
were obtained without consulting sources for these solutions even when available, and additional
information on how to solve these problems might be obtained by consulting the original sources.
There was some overlap between the problems on the Junior and Senior prize exams; the problems
common to both exams are listed only once.

1) (JUNIOR 1 and SENIOR 1) Show that the product of four consecutive integers plus 1 is
always a square of an integer.

Source: Problem 185, p. 80, Középiskolai Matematikai Lapok, Vol. 3, No. 5, January 1896.
http://db.komal.hu/scan/1896/01/89601080.g4.png

Solution: The main challenge in the problem is to obtain the result without messy calculations.
Let the four consecutive integers be k − 1, k, k + 1, and k + 2. Then we have

(k − 1)k(k + 1)(k + 2) = (k − 1)(k + 2) (k2 + k) = (k2 + k − 2)(k2 + k)

=
(
(k2 + k − 1)− 1

)(
(k2 + k − 1) + 1

)
= (k2 + k − 1)2 − 1,

showing that indeed

(k − 1)k(k + 1)(k + 2) + 1 = (k2 + k − 1)2

is the square of an integer.

2) (JUNIOR 2 and SENIOR 2) Let a, b be real numbers and assume b 6= 0. Determine p such
that

x2 + 2(2b− p)x+ p2 + 4ab

is the square of a polynomial of x.
Source: Problem 440, p. 67, Középiskolai Matematikai Lapok, Vol. 5, No. 4, December 1897.

http://db.komal.hu/scan/1897/12/89712067.g4.png

Solution: Assuming A 6= 0, for a quadratic polynomial

Ax2 +Bx+ C

to be a complete square, the equation

Ax2 +Bx+ C = 0

must have exactly one solution, i.e., its discriminant B2 − 4AC must be 0. In the present case we
have A = 1, B = 2(2b−p), and C = p2+4ab, so to ensure that the expression given in the problem
is a complete square, we must have

0 = B2 − 4AC = 4
(
(2b− p)2 − 4(p2 + 4ab),

All computer processing for this manuscript was done under Debian Linux. The Perl programming language was
instrumental in collating the problems. AMS-TEX was used for typesetting.
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i.e., after dividing by 4 and evaluating the square, we obtain

(4b2 − 4bp+ p2)− (p2 + 4ab) = 0,

that is,
b2 − bp− ab = 0.

Since we assumed that b 6= 0, this is equivalent to

p = b− a.

3) (JUNIOR 3 and SENIOR 3) Define a sequence as follows: a1 = 2, and an+1 = a2n−an+1 for
all n ≥ 1. Show that if m > n ≥ 1 then am and an are relatively prime (i.e., their greatest common
divisor is 1).

Source: Problem 6 of the 2010 Eastern Oregon University Mathematics Competition, See
http://www.problemcorner.or://www.eou.edu/math/competition/

Solution: Let k > 1, n ≥ 1 and assume that k | an (in words: k is a divisor of an) or that
k | an − 1. We claim that then k | am − 1 for all m > n.

Indeed, this is true for m = n + 1, since an+1 − 1 = an(an − 1). Assume that for some m > n
we have k | am − 1. Then k | am(am − 1) = am+1 − 1. Hence, our claim follows for all m > n by
induction.

Thus if k > 1 and 1 < n < m and k | an, then k ∤ am since k | am − 1.

4) (JUNIOR 4) Let a and b be integers neither of which is divisible by 3. Show that a6 − b6 is
divisible by 9.

Source: Problem 1163, p. 13, Középiskolai Matematikai Lapok, Vol. 10, No. 9, April 1903.
http://db.komal.hu/scan/1903/04/90304213.g4.png

Solution: If a is not divisible by 6 then a6 − 1 is divisible by 9. There are many simple ways
of seeing this, but before we embark on one of these ways, we would like to point out that this is a
special case of a theorem of Euler:

Euler’s theorem. For a positive integer n, let φ(n) be the number of positive integers < n. Given
any integer m relatively prime to n, the number n is a divisor of mφ(n) − 1.

Given that φ(9) = 6, it follows that a6 − 1 is divisible by 9 unless 3 is a divisor of a. Euler’s
theorem generalizes an earlier theorem of Fermat, which makes the same conclusion in case n is a
prime. Now if neither a nor b is divisible by 3, we can see that a6 − b6 = (a6 − 1) − (b6 − 1) is
divisible by 9.

To conclude, assume a is not divisible by 3. We will show that a6 − 1 is divisible by 9 without
appealing to Euler’s theorem. We have a = 3k ± 1 for some integer k, and so

a2 = (3k ± 1) = 9k2 ± 6k + 1 = 3l + 1

with l = 3k2 ± 2k. Hence

a6 = (a2)3 = (3l + 1)3 = (3l)3 + 3(3l)2 + 3(3l) + 1 = 9(3l3 + 3l2 + l) + 1.

Thus, a6 − 1 is indeed divisible by 9.

5) (JUNIOR 5) Determine all primes p such that p2 + 2 is also a prime.
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Source: Problem 127, p. 60, Középiskolai Matematikai Lapok, Vol. 1/4, December 1, 1947,
proposed by Tibor Szele:

http://db.komal.hu/scan/1947/12/94712060.g4.png

Solution: We must have p = 3. Indeed, if p 6= 3, then p2 − 1 is divisible by 3 according to
Fermat’s theorem. Therefore, p2+2 = (p2−1)+3 is also divisible by 3; hence p2+2 is not a prime.
If p = 3 then p2 +2 = 11 is also a prime, so p = 3 is the only prime that satisfies the requirements.

6) (JUNIOR 6) Show that we have

2x < sinx+ tanx

for every x with 0 < x < π/2.
Source: Problem 4, proposed by Zoltán Bogdán, Cegléd, Hungary, XIII. Nemzetközi Mag-

yar Matematika Verseny (13th International Hungarian Mathematics Competition), Nagydobrony
(Velyka Dobron, Ukraine), March 15–20, 2004. See

http://nmmv.berzsenyi.hu/

Solution by trigonometry: We have α < tanα for any α with 0 < α < π/2. Therefore
x/2 < tan(x/2) for x in the given range. Therefore, it is sufficient to show that

4 tan
x

2
< sinx+ tanx

(
0 < x <

π

2

)
.

Writing t = tan(x/2), we have 0 < t < 1 for x with 0 < x < π/2 and

sinx =
2t

1 + t2
and tanx =

2t

1− t2
;

hence it is sufficient to prove that

4t <
2t

1 + t2
+

2t

1− t2
(0 < t < 1).

Dividing both sides by 2t and multiplying them by (1 + t2)(1 − t2), we obtain the equivalent
inequality

2(1− t4) < 2 (0 < t < 1).

This inequality is obviously true, establishing the assertion.

Solution by elementary geometry: Let O be the center of the coordinate system, and let A
be the point with coordinates (1, 0), let θ be an angle with 0 < θ < π/2, let B be the point in the
first quadrant on the unit circle such that ∠AOB = θ; let C be the intersection of the line OB and

the line x = 1. The area of sector ÂBO of the unit circle is θ/2. The area of the triangle △ABO
is (1/2) sin θ. Finally, the area of the triangle △ACO is (1/2) tan θ Hence, the inequality

2θ < sin θ + tan θ

can be reformulated as saying that the area of the circular segment bounded by the line segment

AB and the arc ÂB of the unit circle is less than the area of the part of the triangle ACO outside

the circle sector ÂBO.
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To show this, let D be the point on the line x = 1 in the first quadrant such that ∠AOD = θ/2.
Let E be the point on the line x = 1 such that OD ‖ BE, and, finally, let F be the intersection of
the chord AB and the line OD. It is easy to see that BE = 2FD; hence, the area of the triangle
△DBE equals the area of the triangle △DBA. The line BD is tangent to the unit circle since
the triangles △BDO and △ADO are congruent. Hence the triangle △DBE lies entirely outside

circular segment bounded by the line segment AB and the arc ÂB of the unit circle; since the
triangle △DBA includes this circular segment, the assertion follows.

Solution by calculus: The inequality to be established can be written as

∫ x

0

2 dt <

∫ x

0

(cos t+ sec2 t) dt
(
0 < x <

π

2

)
,

and to prove this it is enough to show that

2 < cos t+ sec2 t
(
0 < t <

π

2

)
.

Writing y = cos t, this inequality is equivalent to

2 < y +
1

y2
(0 < y < 1),

or else
0 < y3 − 2y2 + 1 (0 < y < 1).

To see this latter, notice that the right-hand side can be factored as (y − 1)(y2 − y − 1), and both
factors are negative when 0 < y < 1. For the second factor, this can be seen by observing that its
value is negative when y = 0 and when y = 1, and the coefficient of y2 is positive; therefore it is
negative for all y with 0 < y < 1.

7) (JUNIOR 7) Let P (x) be a polynomial of positive degree with integer coefficients. Let n1 be
the number of distinct integer roots of P (x) = 1, and n2 the number of distinct integer roots of
P (x) = −1. Prove that if both n1 and n2 are positive, then n1 + n2 ≤ 5.

Source: Problem 5 of the 2017 Rutgers Undergraduate Problem Solving Competition. See
http://www.problemcorner.or://sites.math.rutgers.edu/~prize/

Solution: The key to the solution of this problem is a special case of the Rational Roots
Theorem: Let F (x) be a nonconstant polynomial with integer coefficients, and let m be an integer
such that F (m) = 0. Then m is a divisor of the constant term of F (x).1

In a more symmetric formulation of the problem, let Q(x) and R(x) be polynomials with integer
coefficients such that Q(x)−R(x) = ±2. Let nQ be the number of distinct integer roots of Q(x) = 0,
and nR the number of distinct integer roots of R(x) = 0, and assume that nQ and nR are positive.
Then nQ + nR ≤ 5. In this formulation, we can take Q(x) = P (x) − 1 and R(x) = P (x) + 1, else
Q(x) = P (x) + 1 and R(x) = P (x)− 1.

Assume α is an integer that is a root of Q(x) = 0; then 0 is a root of Q(x+ α) = 0. Hence the
constant term of Q(x + α) is 0. Therefore, the constant term of R(x + α) is ±2. Now, if β is an
integer root of R(x) = 0, then β − α is an integer root of R(x+ α) = 0; So β − α is the divisor of

1In order not to hedge this statement with various exceptions involving 0, one needs to accept the view that any
integer is a divisor of 0; in particular, 0 itself is a divisor of 0 (but not of any other integer).
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the constant term of this latter polynomial, i.e., it is a divisor of ±2. Hence β − α is one of the
numbers ±1 and ±2. Therefore, 1 ≤ |β − α| ≤ 2.

Now assume that γ is the smallest integer among the roots of the equations Q(x) = 0 and
R(x) = 0; without loss of generality, we may assume that γ is a root of Q(x) = 0. Then the only
integer roots of the equation R(x) = 0 can be γ+1 or γ+2; since this equation has an integer root,
at least one of these numbers must be a root. So any root of the equation of Q(x) = 0 is at most
this root plus 2; thus any root of the latter equation is ≤ (γ + 2)+ 2 = γ + 4. Thus, all the integer
roots of the equations Q(x) = 0 and R(x) = 0 are among the numbers γ, γ + 1, γ + 2, γ + 3, and
γ+4. Since these equations cannot have common roots, we can conclude that indeed nQ+nR ≤ 5.

8) (SENIOR 4) Find the largest power of 3 that divides 100!.
Solution: If p is a prime and n is a positive integer, the largest power of p that divides n! has

exponent
n∑

k=1

⌊
n

pk

⌋
;

of course, the terms in this sum for which pk > n are 0. The reason for this is that the number of
positive integers m ≤ n that are divisible by pk is ⌊n/pk⌋. If the largest power of p that divides m
is pr, then m is counted exactly r times in the above sum, namely for each k with 1 ≤ k ≤ r. The
above formula is due to Adrien-Marie Legendre.

In the specific case, ⌊100/3⌋ = 33, ⌊100/32⌋ = ⌊33/3⌋ = 11, ⌊100/33⌋ = ⌊11/3⌋ = 3, ⌊100/34⌋ =
⌊3/3⌋ = 1, ⌊100/35⌋ = ⌊1/3⌋ = 0. Thus, for n = 100, the above sum is 33 + 11+ 3+ 1 = 48. Thus,
348 | 100! but 349 ∤ 100!.

9) (SENIOR 5) Given positive real numbers a, b, and c such that abc = 1, show that

a+ b+ c+ 3

4
≥ 1

a+ b
+

1

b+ c
+

1

c+ a
.

Source: 2015 European Mathematical Cup, Senior Division, Problem 2. Proposed by Dimitar
Trenevski. See

https://artofproblemsolving.com/community/c388198_2015

_european_mathematica_cup

Solution: We will show that under the assumptions we have

(1)
a+ 1

4
≥ 1

b+ c
.

By taking cyclic permutations of 〈a, b, c〉, two other similar inequalities can be obtained:

b+ 1

4
≥ 1

c+ a

and
c+ 1

4
≥ 1

a+ b
.

Adding these three inequalities, the result follows.
We proceed to establish (1). Noting that abc = 1, this inequality can be written equivalently as

1

4bc
− 1

b+ c
+

1

4
≥ 0.
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Multiplying both sides by 4bc(b+ c), this is equivalent to

b+ c− 4bc+ (b+ c)bc ≥ 0,

or else as
b(1− 2c+ c2) + c(1− 2b+ b2) ≥ 0.

Since the expressions in parentheses are complete squares, the last inequality follows. As (1) is
equivalent to this inequality, it also follows.

10) (SENIOR 6) Show that the limit

lim
n→∞

(
−2

√
n+

n∑

k=1

1√
k

)

exists.
Source: Problem 6, University of Connecticut Undergraduate Calculus Competition, 2014. See

https://undergradactivities.math.uconn.edu/calculus-competition/

Solution: We have

∫ n

0

1√
x
dx = lim

ǫց0

∫ n

ǫ

1√
x
dx = lim

ǫց0
2
√
x
∣∣∣
x=n

x=ǫ
= 2

√
n.

Hence

(1)
n∑

k=1

1√
k
− 2

√
n =

n∑

k=1

1√
k
−
∫ n

0

1√
x
dx =

n∑

k=1

(
1√
k
−
∫ k

k−1

1√
x
dx

)
.

Note that on the left-hand side, we wrote the sum first, as opposed to the way we wrote the
same expression in the question. According to conventions of mathematical notation, the scope
of the summation sign ends at the first plus or minus sign after the sum sign; in the formulation
of the problem we wanted to avoid misunderstandings in case the reader is not familiar with this
convention.

It is easy to show that the series on the right-hand side converges. Indeed, we have

1√
k
−
∫ k

k−1

1√
x
dx =

∫ k

k−1

1√
k
dx−

∫ k

k−1

1√
x
dx =

∫ k

k−1

(
1√
k
− 1√

x

)
dx.

In the first integral of the second member, we are integrating a constant; the purpose of writing
things this way was to bring everything under the same integral sign. The integrand is easy to
estimate, say, by the mean-value theorem of differentiation. According to this, for x with 0 < x < k
we have

≥ 1√
k
− 1√

x
= − 1

2ξ3/2
(k − x)

for some ξ with x < ξ < k. For k > 1 and k − 1 ≤ x < k we therefore have

0 >
1√
k
− 1√

x
> − 1

2(k − 1)3/2
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Thus, the for k > 1 the kth term of the series on the right-hand side of (1) is between 0 and
−(k − 1)−3/2/2. Since the series

∞∑

k=2

1

(k − 1)3/2
=

∞∑

k=1

1

k3/2

is convergent by the integral test, it follows that the series on the right-hand side of (1) converges
by the comparison test.

Note. The value of the limit in the question is ζ(1/2) ≈ −1.4603545, where ζ(s) is the Riemann
zeta function; the problem in the University of Connecticut competition asked about minus the
above limit; we changed it so as to be faithful to the important context of the problem. The
Riemann zeta function for the complex variable s is defined as

∞∑

n=1

1

ns
.

This series is convergent for ℜs > 1, and so it only defines the zeta function for ℜs > 1. The
function it represents can be extended to the whole complex plane by analytic continuation; it is
differentiable holomorphic everywhere except at the point s = 1, where it has a pole (it becomes
infinite). This analytic continuation defines the Riemann zeta function on the rest of the complex
plane. For s with 0 < ℜs < 1 it can be described by the formula

lim
n→∞

(
n∑

k=1

1

ks
−
∫ n

0

1

ns

)
.

For s = 1/2 this limit is identical to the one featured in the problem.
The Riemann zeta function plays an important role in the study of prime numbers. The Riemann

Hypothesis, one of the most famous unsolved problems in mathematics, asserts that all zeros in the
the strip 0 < ℜs < 1 of the zeta function lie on the line ℜs = 1/2, called the critical line. These
zeros are called the nontrivial zeros of the zeta function; in addition to the nontrivial zeros, the
zeta function has trivial zeros at all negative even integers (−2, −4, −6, . . . ). From the location of
the nontrivial zeros, one can make important conclusions about the distribution of prime numbers.
In fact, for x > 0 writing π(x) for the number of prime numbers ≤ x, the Prime Number Theorem
asserts that

lim
x→∞

π(x)
x

log x

= 1

(log x denotes the natural logarithm – the notation lnx is rarely used in mathematics, but it is
used in other sciences applying mathematics). The Prime Number Theorem is a consequence of
the result that the Riemann zeta function has no zeros on the line ℜs = 1.

11) (SENIOR 7) Let f be a twice differentiable real-valued function defined on the real line,
and assume that f(0) = 0. Assume further that f ′′ is continuous. Prove that there exists a
ξ ∈ (−π/2, π/2) such that

f ′′(ξ) = f(ξ)(1 + 2 tan2 ξ).

Source: Problem 2, International Mathematics Competition for University Students, 2013,
Blagoevgrad, Bulgaria Day 1, August 8, 2013. See
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http://www.imc-math.org.uk/index.php

Solution: The assumption about the continuity of f ′′ is unnecessary, but showing this involves
some subtle points that most students even with a solid background in the undergraduate course
Advanced Calculus are likely to miss. In the solution below, we do not assume that f ′′ is continuous,
and we will be careful to point out the subtle issues.2

If f ′′(0) = 0, then ξ = 0 satisfies the requirements. Therefore we may assume that f ′′(0) > 0;
indeed, if f ′′(0) < 0, we may replace f(x) with −f(x). Thus, putting

F (x) = f ′′(x)− f(x)(1 + 2 tan2 x),

we have F (0) > 0. Thus, it will be enough to show that there is an x0 ∈ (−π/2, π/2) such that
F (x0) < 0. One might be tempted to think that this is a consequence of the Intermediate-Value
Theorem for continuous functions, but in fact it is not assumed that f ′′(x) is continuous. We have,
however, the following

Intermediate-Value Theorem for Derivatives. be Let a < b, and let G be a function that is
differentiable on the interval [a, b] (also assuming that G is differentiable at a and b), and assume
G′(a) < 0 and G′(b) > 0. Then there is a ξ ∈ (a, b) such that G′(ξ) = 0.

Proof. We want to emphasize again that G′ need not be continuous. As G is differentiable on [a, b],
it is continuous there, so it has an absolute minimum on this interval, by the Maximum-Value
Theorem.3 Let x0 be the place of absolute minimum of G in the interval [a, b]. We cannot have
x0 = a, since G′(a) < 0, so for any ǫ > 0 there is an x ∈ (a, a+ǫ) such that G(a) > G(x). Similarly,
we cannot have x0 = b, since G′(b) > 0. Therefore, x0 ∈ (a, b). Hence G′(x0) = 0 by Fermat’s
Theorem,4 as we wanted to show. �

An immediate generalization of this is that if G is differentiable in [a, b] and c is such that
G′(a) < c < G′(b) or G′(a) > c > G′(b) then there is a ξ ∈ (a, b) such that G′(ξ) = c. To see this,
one only needs to apply the theorem just proved to the function G(x)−cx or cx−G(x) replacing G.

Now, F does not look like the derivative of a function, but indeed we have

F (x) =
d

dx

(
f ′(x)−

∫ x

0

f(t)(1 + 2 tan2 t) dt

) (
x ∈ (−π/2, π/2)

)

by the Fundamental Theorem of Calculus, since the integrand is continuous (because it is differen-
tiable) on (−π/2, π/2).5

In order to show that there is an x0 ∈ (−π/2, π/2), such that F (x0) < 0, assume on the contrary
that

(1) F (x) > 0 for all x ∈ (−π/2, π, 2).

2The source mentioned above posted the problem without the assumption of the continuity of f ′′. We wonder
how the competitors handled this issue. We have not read the published solution to the problem, in accordance
with our policy that we never read the posted solutions to problems to make sure that our solution is independent
of whatever was posted.

3The Maximum-Value Theorem asserts that a function continuous on a closed interval has a maximum in that
interval. If −f has a maximum, then f has a minimum, so the Maximum-Value Theorem is also used to justify the
existence of a minimum.

4Fermat’s Theorem says that if f has a local extremum at x0 and f ′(x0) exists, then f ′(x0) = 0.
5Observe that a continuous function is always the derivative of its integral. Therefore, the Intermediate-Value

Theorem for Derivatives can be generalized to say that the sum of the derivative of a function and of a continuous
function satisfies the Intermediate-Value Property. In fact, the Intermediate-Value Theorem for continuous functions
is itself a consequence of the Intermediate-Value Theorem for Derivatives.

8



We claim that this assumption implies that f(π/2) ≤ 0 and f(−π/2) ≤ 0. Assume, on the contrary,
for example, that f(−π/2) > 0. As f is continuous, and so limx→π/2 f(x) = f(π/2), this implies
that

lim
xրπ/2

f(x)(1 + tan2 x) = +∞.

Then (1) implies that we also have

lim
xրπ/2

f ′′(x) = +∞;

this, however, is not the case. Indeed, by the Intermediate-Value Theorem for Derivatives, there is
a sequence of reals xn < π/2 such that xn → π/2 and f ′′(xn) < f ′′(π/2) + 1.6 This contradiction
shows that f(π/2) ≤ 0. A similar argument shows that also f(−π/2) < 0.

The assumptions that f(0) = 0 and f ′′(0) > 0 implies that for every ǫ > 0 the interval (−ǫ, ǫ)
contains a point x for which f(x) > 0; otherwise, x = 0 would be a place of local maximum
of f , and so we would have f ′′(0) ≤ 0 by the second derivative test for extrema.7 Let x0 be a
point where f assumes an absolute maximum on the interval [−π/2, π/2]. Then f(x0) > 0, and so
x0 ∈ (−π/2, π/2) (because f(π/2) ≤ 0 and f(−π/2) ≤ 0). We also have f ′′(x0) ≤ 0 by the second
derivative test, and so F (x0) < 0.8 This contradicts (1), verifying the assertion of the problem.

6This is the subtle point we expect most students to miss even if they are aware of the Intermediate-Value
Theorem for Derivatives. In fact, not only we need not have

lim
xրπ/2

f ′′(x) = f(π/2),

f ′′(x) need not even be bounded near π/2.
7Indeed, if f(x) = 0 and f(x) ≤ 0 for x ∈ (−ǫ, ǫ), then 0 is a place is a place of local maximum of f , and so

f ′(0) = 0 by Fermat’s Theorem. Therefore, the second derivative test says that x = 0 is a place of is a strict local
minimum, since f ′′(0) > 0. That is, there is an ǫ′ > 0 such that f(x) > 0 for all x 6= 0 in the interval (−ǫ′, ǫ′).

8It was important to make sure that the place of maximum x0 is inside the interval [−π/2, π/2], since the second
derivative test is not applicable for extrema assumed at the endpoint of a closed interval.
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