Senior Prize Exam
 Spring 2018

1) Show that the product of four consecutive integers plus 1 is always a square of an integer.
2) Let a, b be real numbers and assume $b \neq 0$. Determine p such that

$$
x^{2}+2(2 b-p) x+p^{2}+4 a b
$$

is the square of a polynomial of x.
3) Define a sequence as follows: $a_{1}=2$, and $a_{n+1}=a_{n}^{2}-a_{n}+1$ for all $n \geq 1$. Show that if $m>n \geq 1$ then a_{m} and a_{n} are relatively prime (i.e., their greatest common divisor is 1).
4) Find the largest power of 3 that divides 100 !.
5) Given positive real numbers a, b, and c such that $a b c=1$, show that

$$
\frac{a+b+c+3}{4} \geq \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a} .
$$

6) Show that the limit

$$
\lim _{n \rightarrow \infty}\left(-2 \sqrt{n}+\sum_{k=1}^{n} \frac{1}{\sqrt{k}}\right)
$$

exists.
7) Let f be a twice differentiable real-valued function defined on the real line, and assume that $f(0)=0$. Assume further that $f^{\prime \prime}$ is continuous. Prove that there exists a $\xi \in(-\pi / 2, \pi / 2)$ such that

$$
f^{\prime \prime}(\xi)=f(\xi)\left(1+2 \tan ^{2} \xi\right)
$$

Soon after the exam, solutions will appear on the Web Site
http://www.sci.brooklyn.cuny.edu/~mate/prize/2018/

[^0]
[^0]: All computer processing for this manuscript was done under Debian Linux. The Perl programming language was instrumental in collating the problems. $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E} X}$ was used for typesetting.

