Junior Prize Exam

Spring 2019

1) Find all pairs of positive integers (n, k) such that

$$
n!+8=2^{k}
$$

2) Let x and y be integers. Show that

$$
x(x+1) \neq 2(5 y+2) .
$$

3) Given positive real numbers a, b, and c, prove that

$$
(a+b)(b+c)(c+a) \geq 8 a b c
$$

4) Given an isosceles trapezoid, consider a triangle with sides equal to the leg, the diagonal, and the geometric mean of the parallel sides of the trapezoid. Show that this triangle is a right triangle.

In other words, given a trapezoid $A B C D$ with $A B \| C D, A D=B C$, and $A D \nVdash B C$ unless $\angle D A B$ is a right angle, show that a triangle with sides of lengths $A D, B D$, and $\sqrt{A B \cdot C D}$ is a right triangle.
5) The function f defined everywhere on the real line satisfies

$$
f(x+1)=\frac{1+f(x)}{1-f(x)}
$$

for all real x. Show that f is periodic; that is, there is a positive real number T such that $f(x+T)=f(x)$ for all real x.
6) Let x be a nonzero real number such that

$$
n=x+\frac{1}{x}
$$

is an integer. Show that

$$
A=x^{4}+x^{3}+x^{2}+x^{-2}+x^{-3}+x^{-4}
$$

is also an integer.
7) Let $n \geq 3$ be an integer. One wants to place n positive integers around a circle in such a way that if a and b are adjacent then either a is a divisor of b or b is a divisor of a, and if a and b are not adjacent then neither is the divisor of the other. Show that this is possible if and only if n is even.

Soon after the exam, solutions will appear on the Web Site
http://www.sci.brooklyn.cuny.edu/~mate/prize/2019/

[^0]
[^0]: All computer processing for this manuscript was done under Debian Linux. The Perl programming language was instrumental in collating the problems. $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{TEX}_{\mathrm{E}}$ was used for typesetting.

