Senior Prize Exam

Spring 2019

1) Find all pairs of positive integers (n, k) such that

$$
n!+8=2^{k}
$$

2) Let x and y be integers. Show that

$$
x(x+1) \neq 2(5 y+2) .
$$

3) Given positive real numbers a, b, and c, prove that

$$
(a+b)(b+c)(c+a) \geq 8 a b c .
$$

4) Given an equilateral triangle $A B C$, let P be an arbitrary point on the circle circumscribed to the triangle. Show that $P A^{2}+P B^{2}+P C^{2}$ is constant.
5) Let a, b, c be positive numbers such that $a^{2}+b^{2}+c^{2}=1$. Show that

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>5 .
$$

6) Let (a, b) be an interval on the real line, and let $c \in(a, b)$. Assume the real valued function f is continuous on (a, b), and differentiable at every point x in (a, b) that is different from c. Assume, further, that the limit $d=\lim _{x \rightarrow c} f^{\prime}(x)$ exists (in particular, it is finite). Show that then f is also differentiable at c, and $f^{\prime}(c)=d$.
7) Denoting by \mathbb{R} the set of real numbers, assume the function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the equation

$$
f(f(x))=-x
$$

for all real x. Show that f cannot be continuous everywhere.

> SOON AFTER THE EXAM, SOLUTIONS WILL APPEAR ON THE WEB Site http://www.sci.brooklyn.cuny.edu/~mate/prize/2019/

[^0]
[^0]: All computer processing for this manuscript was done under Debian Linux. The Perl programming language was instrumental in collating the problems. $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E} X}$ was used for typesetting.

