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The source for each problem is listed below when available; but even when the source is given,
the formulation of the problem may have been changed. Solutions for the problems presented here
were obtained without consulting sources for these solutions even when available, and additional
information on how to solve these problems might be obtained by consulting the original sources.
There was some overlap between the problems on the Junior and Senior prize exams; the problems
common to both exams are listed only once.

1) (JUNIOR 1 and SENIOR 1) Prove that the sum of the squares of five consecutive integers is
divisible by 5, but it is not divisible by 25. Dániel Arany Mathematics Competition, Category 1,
Round 1, 10th grade, Problem 3.

Source:

http://versenyvizsga.hu/external/vvszuro/vvszuro.php

Solution: Let the five integers be n− 2, n− 1, n, n+ 1, and n+ 2. Then

(n− 2)2 + (n− 1)2 + n2 + (n+ 1)2 + (n+ 2)2 = 5n2 + 10 = 5(n2 + 2),

and this is clearly divisible by 5. To show that it is not divisible by 25, we need to show that n2+2
is not divisible by 5. For this, we need to examine the cases n = 5k, n = 5k ± 1, and n = 5k ± 2
for some integer k. In these cases, n2 + 2 in turn equals 25k2 + 2, 25k2 ± 10k + 3, 25k2 ± 20k + 6.
It is clear that none of these numbers are divisible by 5.

2) (JUNIOR 2 and SENIOR 2) Let n be an integer and let x = 3n− 1. Show that

x6 − x3 − x2 + x

is divisible by 9.
Source: Based on Problem 897, p. 140, Középiskolai Matematikai Lapok, Vol. VIII, No. 6,

January 1901,
http://db.komal.hu/scan/1901/01/90101140.g4.png

Solution: Using the binomial theorem, for a positive integer k ≥ 1, we have

xk = (3n− 1)k =
(

3n+ (−1)
)k

= . . .+

(

k

1

)

3n(−1)k−1 +

(

k

k

)

(−1)k = . . .+ (−1)k−1(3kn− 1),

where the terms indicated by . . . are terms are divisible by 9 (since they contain powers higher
than 1 of 3n, or, in case k = 1, they are nonexistent). Thus,

xk ≡ (−1)k−1(3kn− 1) mod 9 (k ≥ 1);

therefore

x6 − x3 − x2 + x ≡ −(3 · 6n− 1)− (3 · 3n− 1)−
(

−(3 · 2n− 1)
)

+ (3n− 1)

= (−18− 9 + 6 + 3)n+ (1 + 1− 1− 1) ≡ 9n ≡ 0 mod 9,

All computer processing for this manuscript was done under Debian Linux. The Perl programming language was
instrumental in collating the problems. AMS-TEX was used for typesetting.
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which is what we wanted to prove.

3) (JUNIOR 3 and SENIOR 3) Let A 6= 0, B 6= 0, C 6= 0 and a, b, c be real numbers, and
assume that

a+ b+ c = 0, A+B + C = 0,
a

A
+

b

B
+

c

C
= 0.

Show that
aA2 + bB2 + cC2 = 0.

Source: Dániel Arany Mathematics Competition, beginners’ level (9th grade), round 2, 1954.
See Középiskolai Matematikai Lapok, No. 10, October 1954,

http://db.komal.hu/scan/1954/10/95410036.g4.png

Solution: Writing
S = aA2 + bB2 + cC2,

and noting that we have A = −B −C, B = −A−C, and C = −A−B according to the second of
the given equations, we obtain that

2S = S + S =
(

aA2 + bB2 + cC2
)

+
(

a(B + C)2 + b(A+ C)2 + c(A+B)2
)

= a(A2 +B2 + C2) + b(A2 +B2 + C2) + c(A2 +B2 + C2) + 2aBC + 2bAC + 2cAB

= (a+ b+ c)(A2 +B2 + C2) + 2(aBC + bAC + cAB).

The first term on the right-hand side is 0 in view of first of the given equations, and the second
term is 0 as can be seen by multiplying the third of the given equations by ABC. Hence S = 0, as
we wanted to show.

4) (JUNIOR 4) Given real numbers xi ∈ [0, 1] for 1 ≤ i ≤ n, show that

(

1 +
n
∑

i=1

xi

)2

≥ 4
n
∑

i=1

x2
i .

Source: Problem 278, Problems of the All-Soviet-Union math competitions 1961-1986,
http://web.archive.org/web/20120825124642/http://pertselv.tripod.com/RusMath.html

Solution: Using the identity a2 − b2 = (a+ b)(a− b), we have

(

1 +
n
∑

i=1

xi

)2

−
(

−1 +
n
∑

i=1

xi

)2

= 2
n
∑

i=1

xi · 2 = 4
n
∑

i=1

xi.

Hence
(

1 +

n
∑

i=1

xi

)2

= 4

n
∑

i=1

xi +
(

−1 +

n
∑

i=1

xi

)2

≥ 4

n
∑

i=1

xi ≥ 4

n
∑

i=1

x2
i ;

the last inequality holds since xi ≥ x2
i , given that 0 ≤ xi ≤ 1. This establishes the inequality in

question.

5) (JUNIOR 5) How many ways can one place 2 red, 3 green, and 4 blue balls in a row in such
a way that no red ball is placed next to a green ball. (We count color arrangements; that is, two
balls of the same color are indistinguishable.)
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Source: Problem 461, p. 156, Középiskolai Matematikai Lapok, Vol. IV, No. 4–5, May–June,
1952. See

http://db.komal.hu/scan/1952/05/95205156.g4.png

Solution: We will study the different ways of placing the red balls.
1. Placing the red balls in such a way that fixes the placement of one blue ball. There are two

such placement, in which the two red balls are placed next to each other at either end. In these
arrangements of one blue ball must be placed at the free place next to one of the red balls (so no
green ball will be placed there). With each arrangement, the remaining balls (3 blue balls and 3
green balls) can be arranged in

(

6
3

)

= 20 ways, giving rise to 2 · 20 = 40 arrangements.
2. Placing the red balls in such a way that fixes the placements of two blue balls. There are

1 + 2 + 6 such ways: placing a red ball at each end, or one red ball at one end, leaving a gap of
one place, and placing the other red ball, or placing the two red balls next to each other, but not
at the end. Each of these 9 arrangements leaves the placement of the remaining 2 blue balls and 3
green balls to be arranged in

(

5
2

)

= 10 ways, resulting in a total of 6 · 10 = 90 arrangements.
3. Placing the red balls in such a way that fixes the placements of three blue balls. There are

2 · 6 + 5 = 17 such ways: placing a red ball at one end, leaving a gap of at least two places, then
placing the other red ball anywhere but not at the end, or placing the two red balls with exactly
one gap between them, but placing neither ball at the end. The remaining 1 blue ball and 3 green
balls can be placed in

(

4
1

)

= 4 ways, resulting in 17 · 4 = 68 arrangements.
4. Placing the red balls in such a way that fixes the placements of all four blue balls. In these

arrangements, there is a gap of size at least two between the red balls, and neither red ball is placed
at the end. There are 4 + 3+ 2+ 1 = 10 such placements (if the red ball on the left is put at place
2, the other red ball can be put at places 4, 5, 6, or 7, if it is put at place 3, the other red ball
can be put at places 5, 6, or 7, etc.). With each of these placements, the remaining green balls can
only be placed in one way, resulting in a total or 10 arrangements.

Adding up the number of arrangements given in each of the cases, we obtain a total of 40+90+
68 + 10 = 208 arrangements.

6) (JUNIOR 6) Find all integer solutions of the system of equations

x+ y + z + t = 22, xyzt = 648,

1

x
+

1

y
=

7

12
,

1

z
+

1

t
=

5

18
.

Source: Based on Problem 2040, p. 175, Középiskolai Matematikai Lapok, Vol. XVIII, No. 8,
March 1911

http://db.komal.hu/scan/1911/03/91103175.g4.png

Solution: It is easy to solve the system of equations

u+ v = p, uv = q

for the unknowns u and v. Indeed, assuming these equations are satisfied, we have

(ζ − u)(ζ − v) = ζ2 − (u+ v)ζ + uv = ζ2 − pζ + q.

Since the left-hand side is 0 exactly when ζ = u or ζ = v. That is, u and v can be found as the two
solutions of the equation

ζ2 − pζ + q = 0
3



for ζ.
Going back to the original system of equations, the third and the fourth equations can be written

as

(1) x+ y =
7

12
xy and z + t =

5

18
zt.

Hence, writing
u = x+ y and v = z + t,

the first and second equations can be written as

u+ v = x+ y + z + t = 22

and

uv =
7

12
xy ·

5

18
zt =

7

12
·
5

18
xyzt =

7

12
·
5

18
· 648 = 105.

That is
u+ v = 22 and uv = 105.

The solutions of the equations ζ2 − 22ζ + 105 = 0 are 7 and 15. Therefore, we have

u =
7

12
xy = 7 and v =

5

18
zt = 15 or u =

7

12
xy = 15 and v =

5

18
zt = 7.

The second choice does not give integer values for xy, so we need to pick the first choice. So we must
have xy = 12, and so x+y = 7 by the first equation in (1). Similarly, we must have zt = 3 ·18 = 54,
and so z+ t = 15 by the second equations in (1). That is, x and y can be obtained as the solutions
of the equation ζ2 − 7ζ + 12 = 0, i.e., x = 3 and y = 4 or x = 4 or y = 4. Similarly, z and t can
be obtained as the solutions of the equation ζ2 − 15ζ + 54 = 0, i.e., z = 9 and t = 6 or z = 6 and
t = 9. These give all integer solutions of the above system of equations, That is, (x, y, z, t) can be

(3, 4, 6, 9) or (4, 3, 6, 9) or (3, 4, 9, 6) or (4, 3, 9, 6).

The equations have four more solutions that involve fractions; they can be found by taking the
second choice for u and v.

7) (JUNIOR 7) Let P (x) be a polynomials with real coefficients, and assume that there is no

polynomial Q(x) such that P (x) =
(

Q(x)
)2
. Show that there is no polynomial R(x) such that

P (P (x)) =
(

R(x)
)2
.

Source: Problem 3 (simplified), József Kürschák Mathematical Competition, Hungary, 2016.
See

http://www.ematlap.hu/index.php/hirek-ujdonsagok-2017-03/

420-jelentes-a-2016-evi-kurschak-jozsef-matematikai-tanuloversenyrol

Solution: Let

(1) P (x) = a
n
∏

j=1

(x− αj)
kj ,
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where the αj ’s are pairwise distinct complex numbers, and kj ≥ 1 is the multiplicity of the zero
αj . Given that P (x) is not the square of a polynomial, there must be at least one among the kj ’s
that is odd. We may assume that k1 is odd. We have

P (P (x)) = a
n
∏

j=1

(

P (x)− αj

)kj
.

Since the factors P (x)−αj are all relatively prime to each other (i.e., no two of them has a common
factor of degree ≥ 1, since the difference of any two is a nonzero constant), for P (P (x)) to be a
square of a polynomial, each of the factors with an odd exponent must itself be a square of a
polynomial.

In order for P (x)− a1 to be a square of a polynomial, it must have an even degree. That is, the
degree of P (x) must be even. For this, there must be an exponent kj other than k1 that is odd in
the factorization (1); we may assume that k2 is odd.

It is, however, not possible for there to be polynomials T1(x) and T2(x) such that P (x)− α1 =
(

T1(x)
)2

and P (x)− α2 =
(

T2(x)
)2
. Indeed, were this the case, we would have

α2 − α1 =
(

P (x)− α1

)

−
(

P (x)− α2

)

=
(

T1(x)
)2

−
(

T2(x)
)2

=
(

T1(x) + T2(x)
)(

T1(x)− T2(x)
)

.

Here, the left-hand side is not zero and has degree 0, while the right-hand side has degree at least 1,
so this equation cannot hold. This shows that P (P (x)) cannot be a square of a polynomial under
the given assumptions.

Note. We simplified the problem in that the problem asks whether or not P (P (x)) can be a
square assuming that no polynomial Q(x) exists as described. Our proof uses the Fundamental
Theorem of Algebra, which guarantees the existence of the factorization (1). The above website
mentions that there is an elegant solution of the problem that does not use the Fundamental
Theorem of Algebra. No solution is described at the website.

8) (SENIOR 4) Let x and y be two positive reals. Prove that

xy ≤
xn+2 + yn+2

xn + yn
(n ≥ 0).

Source: Problem 1, Pan African Mathematics Competition, Day 2, 2008. See
https://artofproblemsolving.com/community/c4521_2008_pan_african

Solution: Without loss of generality we may assume that x ≤ y. Dividing the inequality to be
proved by x2, and then dividing the numerator and denominator on the right-hand side by xn, the
inequality can be written as

y

x
≤

1 +
(

y
x

)n+2

1 +
(

y
x

)n .

Writing t = y/x, we have t ≥ 1 since we assumed x ≤ y, and the inequality becomes

t ≤
1 + tn+2

1 + tn
(t ≥ 1).

Multiplying both sides by 1 + tn, we obtain

tn+1 + t ≤ tn+2 + 1 (t ≥ 1).
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After rearranging this, we obtain the inequality

tn+1 − 1 ≤ t(tn+1 − 1), (t ≥ 1),

which is equivalent to the inequality to be proved. Making use of the fact that the left-hand side is
nonnegative since n ≥ 0, this inequality is clearly true, completing the proof of the above inequality.

Note. The intention was that n is a positive integer, but this was missing from the statement
of the problem. However, as the proof shows, the result is true for any real n ≥ 0. The source does
state that n is a nonnegative integer.

9) (SENIOR 5) Let n be a positive integer and

p(z) = zn +
n−1
∑

k=0

akz
k

be a polynomial with complex coefficients. If r is a complex number such that p(r) = 0, show that

|r| ≤ max
(

1,
n−1
∑

k=0

|ak|
)

Source: Written Qualifying Examination, Fall 2001, Day 2, Problem 9, Department of Mathe-
matics, Rutgers University. See

https://www.math.rutgers.edu/academics/graduate-program/

program-requirements/requirements-for-the-doctoral-degree/

written-qualifying-exam

Solution: There is nothing to prove if |r| ≤ 1, so we may assume that |r| > 1. We have

0 =
p(r)

rn−1
= r +

n−1
∑

k=0

ak
rn−1−k

.

Hence

r = −
n−1
∑

k=0

ak
rn−1−k

.

Taking absolute values, noting that the exponent of r in the denominator is nonnegative, and using
the assumption |r| > 1, we obtain

|r| =
∣

∣

∣

n−1
∑

k=0

ak
rn−1−k

∣

∣

∣
≤

n−1
∑

k=0

∣

∣

∣

ak
rn−1−k

∣

∣

∣
≤

n−1
∑

k=0

|ak|.

This completes the proof (note that the last inequality needs to hold only in case |r| > 1).

10) (SENIOR 6) Let f be a continuously differentiable function for x ≥ 0, and assume it satisfies
the equation

x = f(x)ef(x)
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for all x ≥ 0. Calculate
∫ e

0

f(x) dx.

Source: Problem 10, February 15, 2014, Calculus Test, Rice Mathematics Tournament. See
http://www.ruf.rice.edu/ eulers/prevtests.html

Solution: We have f(x) = xe−f(x) according to the equation x = f(x)ef(x), and so, using
integration by parts, we have

∫ e

0

f(x) dx =

∫ e

0

xe−f(x) dx =
x2

2
e−f(x)

∣

∣

∣

x=e

x=0
+

∫ e

0

x2

2
e−f(x)f ′(x) dx

=
e2

2
e−f(e) +

1

2

∫ e

0

(

f(x)
)2
ef(x)f ′(x) dx;

to obtain the second equation, using the equation x = f(x)ef(x), we replaced x2 under the integral

sign with
(

f(x)
)2
e2f(x). Substituting t = f(x) in the integral on the right-hand side, we have

dt = f ′(x) dx; as for the limits, the lower limit will be 0, since f(0) = 0 according to the equation
x = f(x)ef(x). After this substitution, the integral is easily evaluated by repeated integrations by
parts. Hence we have

∫ e

0

f(x) dx =
e2

2
e−f(e) +

1

2

∫ f(e)

0

t2et dt

Before proceeding any further, we will determine the value of f(e). According to the equation
x = f(x)ef(x), x = f(e) is a solution of the equation e = xex, that is, of the equation x = ee−x.
The solution of this equation is unique; indeed, in the xy coordinate system, this solution can be
obtained as the x-coordinate of the intersection of the curves y = x and y = ee−x; since the former
curve is increasing, while the latter one is decreasing, there is only one point of intersection. Since
x = 1 is obviously a solution, it follows that f(e) = 1.

Hence we have

∫ e

0

f(x) dx =
e2

2
e−1 +

1

2

∫ 1

0

t2et dt =
e

2
+

1

2
(t2 − 2t+ 2)et

∣

∣

∣

t=1

t=0

=
e

2
+

e

2
− 1 = e− 1,

where we used repeated integrations by part to evaluate the integral.

Note. The argument used to determine f(e) can also be used to show that equation x =
f(x)ef(x) uniquely determines f(x) for x ≥ 0. Further, f(x) can also be obtained as a solution of
a differential equation, and then using standard theorems about differential equation it will follow
that f is continuously differentiable for x ≥ 0. Indeed, writing y = f(x) and differentiating the
equation x = yey, we obtain 1 = y′ey + yy′ey, and so y = f(x) is the solution of the differential
equation

y′ =
e−y

1 + y
.

Given an initial condition f(0) = y0 ≥ 0, this equation is uniquely solvable for all x ≥ 0. The
equation x = f(x)ef(x), specifies the initial condition f(0) = 0.

11) (SENIOR 7) Let U be a finite dimensional vector space over the complex numbers.
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(i) Let S, T : U → U be linear transformations, and assume λ is an eigenvalue of ST . Show that
λ is also an eigenvalue of TS (a complex number λ is an eigenvalue of a linear transformation T if
Tx = λx for a nonzero vector x; x is called the eigenvector associated with the eigenvalue λ).

(ii) Writing I : U → U for the identity transformation, show that there are no linear transfor-
mations T, S : U → U such that ST − TS = I.

Source: Part (ii) is given as Problem 6c on Ph. D. Qualifying Examination given in January
2005 in Pure Mathematics at the University of British Columbia. See

https://www.math.ubc.ca/Grad/QualifyingExams/

Solution: Part (i). Let x ∈ U be a nonzero vector such that STx = λx. Then we have
TS(Tx) = λ(Tx). If Tx 6= 0, then this equation shows that λ is also an eigenvalue of TS with
eigenvector Tx. Assume therefore that Tx = 0; in this case we also have STx = 0, so we must have
λ = 0 according to the equation STx = λx. We then have to show that 0 is also an eigenvalue of
the transformation TS.

Writing kerT
def
= {v ∈ U : Tv = 0} for the kernel, or null space, of T , we have x ∈ kerT . given

that Tx = 0. As x 6= 0, it follows that dimkerT > 0, where dimV for a vector space V denotes its
dimension. By the rank-nullity theorem1 we have

dimU = dimkerT + dim raT,

where raT is the range of T . Hence dim raT < dimU . Since raTS ⊂ raT , it follows that
dim raTS ≤ dim raT < dimU and so, applying the rank-nullity theorem to TS, we can see that
dimkerTS > 0. Hence, there is a nonzero vector y ∈ U such that TSy = 0. This shows that 0 is
indeed an eigenvalue of TS, as we wanted to show.

Part (ii). Assume ST − TS = I, and let λ be an eigenvalue of TS. If x is a corresponding
eigenvector, then STx = TSx+ x = (λ+ 1)x, so λ+ 1 is an eigenvalue of ST . By part (i) of this
problem, then λ+ 1 is also an eigenvalue of TS. Continuing this argument, we can see that λ+ k
is an eigenvalue of TS for all integers k ≥ 0. Since no transformation on a finite dimensional space
can have infinitely many eigenvalues (as we will explain below), this is impossible, showing that no
such S and T can exist.

Given a linear transformation T : U → U , one can show that T cannot have more eigenvalues
than dimU as follows. If λi for 1 ≤ i ≤ m are pairwise distinct eigenvalues of T and xi is
an eigenvector corresponding to the eigenvalue λi, then the system (x1, x2, . . . , xm) is linearly
independent (so we cannot have m > dimU). Indeed, assume that we have

m
∑

i=1

αixi = 0,

where not all the numbers αi are zero. Assume that the αi’s here are so chosen that the smallest
possible number among them is not zero. Let the number of nonzero coefficients among the αi

1For a discussion of the rank-nullity theorem, see my notes jordan_canonical.pdf at the site

http://www.sci.brooklyn.cuny.edu/~mate/misc/

on pp. 2–3 in Subsection 1.1. On p. 3 in Subsection 1.2, the following result, used below in the solution for part
(ii), is established: If U is a finite-dimensional vector space over the complex numbers, and R : U → U is a linear
transformation, then R has an eigenvalue.
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be k, where 1 ≤ k ≤ m. By rearranging the vectors and the corresponding eigenvalues, we may
assume that αi 6= 0 for i with 1 ≤ i ≤ k and αi = 0 for k < i ≤ m, where k ≥ 1. That is,

k
∑

i=1

αixi = 0.

Of course, k = 1 is not possible here, since it would mean that x1 = 0, whereas we assumed that
an eigenvector cannot be the zero vector. Applying the linear transformation T to the vector on
the left of this equation, and noting that Txi = λixi, we obtain

k
∑

i=1

αiλixi = 0.

Multiplying the former linear relation by λk and subtracting from it the latter, we obtain

k−1
∑

i=1

(αiλk − αiλi)xi = 0.

None of the coefficients αiλk − αiλi (1 ≤ i ≤ k − 1) is zero, since λi 6= λk by our assumption.
This relation contradicts the minimality of k, showing that the system (x1, x2, . . . , xm) is indeed
linearly independent.

Note. As linear transformations on finite dimensional spaces can be identified with matrices,
the question could equally well have been asked for n×n matrices for a positive integer n. Part (i)
is probably well known; it was asked mainly because it gives a hint for solving part (ii), although
it is possible that a solution independent of part (i) can be given for part (ii). The fact that the
number of distinct eigenvalues is finite is probably also well known, since the eigenvalues of an n×n
matrix A are the zeros of its characteristic polynomial det(A− λI), where I is the identity matrix.
Finally, as for (i) formulated for matrices, if A and B are n× n matrices over a commutative ring
with a unit element, then it can be shown that

(1) det(AB − λI) = det(BA− λI)

is an identity. Indeed, if A and B are matrices over the reals and A is nonsingular, then we have

det(AB − λI) = det =
(

A(B − λA−1)
)

= det(A) det(B − λA−1)

= det(B − λA−1) det(A) =
(

(B − λA−1)A
)

= det(BA− λI).

This is enough to imply that (1) is an identity on all commutative rings with a unit element by the
argument given in the the notes cayley_hamilton.pdf at the website

http://www.sci.brooklyn.cuny.edu/~mate/misc/

on pp. 1–2 in Section 1.
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