Junior Prize Exam

Spring 2020

1) Prove that the sum of the squares of five consecutive integers is divisible by 5 , but it is not divisible by 25 .
2) Let n be an integer and let $x=3 n-1$. Show that

$$
x^{6}-x^{3}-x^{2}+x
$$

is divisible by 9 .
3) Let $A \neq 0, B \neq 0, C \neq 0$ and a, b, c be real numbers, and assume that

$$
a+b+c=0, \quad A+B+C=0, \quad \frac{a}{A}+\frac{b}{B}+\frac{c}{C}=0
$$

Show that

$$
a A^{2}+b B^{2}+c C^{2}=0
$$

4) Given real numbers $x_{i} \in[0,1]$ for $1 \leq i \leq n$, show that

$$
\left(1+\sum_{i=1}^{n} x_{i}\right)^{2} \geq 4 \sum_{i=1}^{n} x_{i}^{2}
$$

5) How many ways can one place 2 red, 3 green, and 4 blue balls in a row in such a way that no red ball is placed next to a green ball. (We count color arrangements; that is, two balls of the same color are indistinguishable.)
6) Find all integer solutions of the system of equations

$$
\begin{aligned}
& x+y+z+t=22, \quad x y z t=648 \\
& \frac{1}{x}+\frac{1}{y}=\frac{7}{12}, \quad \frac{1}{z}+\frac{1}{t}=\frac{5}{18}
\end{aligned}
$$

7) Let $P(x)$ be a polynomials with real coefficients, and assume that there is no polynomial $Q(x)$ such that $P(x)=(Q(x))^{2}$. Show that there is no polynomial $R(x)$ such that $P(P(x))=(R(x))^{2}$.

Soon after the exam, solutions will appear on the Web Site
http://www.sci.brooklyn.cuny.edu/~mate/prize/2020/

[^0]
[^0]: All computer processing for this manuscript was done under Debian Linux. The Perl programming language was instrumental in collating the problems. $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$ was used for typesetting.

