
All Problems on the Prize Exams

Spring 2021 Version Date: Mon Mar 8 18:20:24 EST 2021

The source for each problem is listed below when available; but even when the source is given,
the formulation of the problem may have been changed. Solutions for the problems presented here
were obtained without consulting sources for these solutions even when available, and additional
information on how to solve these problems might be obtained by consulting the original sources.
The Junior Prize Exam was not given this year.

1) (SENIOR 1) Find all positive integers x such that x5 − 3x2 = 216.
Source: Probl 10, p. 8, Középiskolai Matematikai Lapok, No. 00, Vol. 1 January 1994.

http://db.komal.hu/scan/1894/00/89400008.g4.png

Solution: We have (x3 − 3)x2 = 216. The prime factorization of 216 is 23 · 33. Since x3 − 3 is
not divisible by 32, we must have 3 | x2; so x ≥ 3. Then x3 − 3 ≥ 24. Since 24 · 9 = 216, we cannot
have x > 3; hence x = 3.

2) (SENIOR 2) If n is an integer, show that

n

6
+

n2

2
+

n3

3

is also an integer.
Source: Problem 1034, p. 203, Középiskolai Matematikai Lapok, Vol. IX/9, April 1902. See

http://db.komal.hu/scan/1902/04/90204203.g4.png

Solution: We need to show that

6

(

n

6
+

n2

2
+

n3

3

)

= n+ 3n2 + 2n3

is divisible by 6. This can be accomplished by showing that it is divisible by both 2 and 3.
As for divisibility by 2, we have n+ 3n2 + 2n3 = n(n+ 1)(2n+ 1), and here n(n+ 1) is always

divisible by 2, since one of n and n+ 1 is even. As for divisibility by 3, we have

n+ 3n2 + 2n3 = 3(n2 + n3) + n− n3 = 3(n2 + n3)− n(n+ 1)(n− 1).

Since one of the numbers n, n− 1, and n+ 1 is divisible by 3, both terms here are divisible by 3.

3) (SENIOR 3) Let n be a positive integer. Assume we are given n (not necessarily distinct)
integers such that their sum is 0 and their product is n itself. Prove that n is divisible by 4.

Source: Problem 371, The problems of the All-Soviet-Union mathematical competitions 1961-
1986. See
http://web.archive.org/web/20120825124642/http://pertselv.tripod.com/RusMath.html

Solution: The number of odd numbers among the given numbers must be even, otherwise the
sum would not be 0. There must be an even one among the numbers; otherwise the product would
not be even, and the number n of the given numbers would be even. Given that there is an even
number, the product is even, the the number n of the given numbers must also be even. Since
number of odd ones among these is even, so must be the number of the even ones, so that the total

All computer processing for this manuscript was done under Debian Linux. The Perl programming language was

instrumental in collating the problems. AMS-TEX was used for typesetting.
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number is even. So, the product n of the given numbers is divisible by 4, since there are at least
two even ones among them.

4) (SENIOR 4) Show that for every integer n > 5 we have

(n

2

)n

> n!.

Source: Problem 1595, p. 173, Középiskolai Matematikai Lapok, Vol. XIV/3, March 1907. See
http://db.komal.hu/scan/1907/03/90703173.g4.png

First solution: Observe that the function f(x) = 4x(1 − x) assumes is increasing if x ≤ 1/2,
decreasing if x > 1/2. It has maximum at x = 1/2, when it assumes the value 1. Hence, assuming
that n ≥ 6 and k with 1 ≤ k ≤ n− 1, we have

4k(n− k)

n2
= 4

k

n

(

1− k

n

)

= f

(

k

n

)

≤ 1.

For the values k = 1 and 2,, we have better estimates. For k = 1, we have

f

(

1

n

)

= f

(

n− 1

n

)

≤ f

(

1

6

)

=
5

9
.

For k = 2, we have

f

(

2

n

)

= f

(

n− 2

n

)

≤ f

(

2

6

)

=
8

9
.

Hence

f

(

1

n

)

f

(

2

n

)

= f

(

n− 2

n

)

f

(

n− 1

n

)

=
40

81
<

1

2
.

Hence, for n ≥ 6 we have

(

1

2

)2

> f

(

1

n

)

f

(

2

n

)

f

(

n− 2

n

)

f

(

n− 1

n

)

≥
n−1
∏

k=1

f
(n

k

)

=

n−1
∏

k=1

4k(n− k)

n2
= 4n−1n−2(n−1)

(

n−1
∏

k=1

k
)(

n−1
∏

k=1

(n− k)
)

= 4n−1n−2(n−1)(n− 1)! · (n− 1)! = 22(n−1)n−2(n−1)((n− 1)!)2.

Taking the square root of this inequality, we obtain

1

2
> 2n−1n−(n−1)(n− 1)! ,

i.e.,
nn−1

2n
> (n− 1)! .

Multiplying both sides by n, the inequality to be established follows.
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Second solution: The result also can be proved by induction. For n = 6 the result is true.
Indeed, for n = 6 we have

(n

2

)n

= 729 and n! = 720.

Assuming that this is true for some n ≥ 6, we have

(

n+ 1

2

)n+1

=
1

2

(

n+ 1

n

)n

·
(n

2

)n

(n+ 1)

>
1

2

(

n+ 1

n

)n

· n!(n+ 1) =
1

2

(

n+ 1

n

)n

· (n+ 1)!,

where the inequality follows by the induction hypothesis. Therefore, the result will follow if we
show that

(1)

(

n+ 1

n

)n

> 2

for n ≥ 6. This is indeed true, since the left-hand side is equal to 2 for n = 2, and the function

f(x)
def
=

(

x+ 1

x

)x

> 2

is increasing for x > 0. Since lnx is an increasing function, it is enough to show that

g(x)
def
= ln f(x) = x

(

ln(x+ 1)− lnx
)

is increasing for x > 0.
Assuming x > 0, we have

g′(x) = ln(x+ 1)− lnx+
x

x+ 1
− 1 =

∫ x+1

x

dt

t
− 1

x+ 1
> 0.

The inequality is true since
∫ x+1

x

dt

t
>

∫ x+1

x

dt

x+ 1
=

1

x+ 1
.

This shows that g(x) is increasing; hence so is f(x), and so inequality (1) in fact holds for n ≥ 2;
for n = 1, we have equality instead of the inequality. Thus the result follows by induction.

Note. Inequality (1) for integers n ≥ 2 can also be established by noting that for n ≥ 1 we have

(2)

(

n+ 2

n+ 1

)n+1

>

(

n+ 1

n

)n

.

To see this, observe that by the binomial theorem we have

(

n+ 1

n

)n

=

(

1 +
1

n

)n

=
n
∑

k=0

(

n

k

)

1

nk
=

n
∑

k=0

1

k!

1

nk

k−1
∏

j=0

(n− j)

=
n
∑

k=0

1

k!

k−1
∏

j=0

1

n
(n− j) =

n
∑

k=0

1

k!

k−1
∏

j=0

(

1− j

n

)

.
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Replacing n by n+ 1, this equation becomes

(

n+ 2

n+ 1

)n+1

=
n+1
∑

k=0

1

k!

k−1
∏

j=0

(

1− j

n+ 1

)

.

Comparing the right-hand sides of the last two displayed formulas, it is clear that inequality (2)
holds. Indeed, for each value of k with 0 ≤ k ≤ n the the term in the sum on the right-hand side
of the latter formula is larger than the corresponding term on the right-hand side of the former.
Furthermore, the latter formula has an additional term for k = n+ 1.

5) (SENIOR 5) Assume that P (x) is a polynomial with integer coefficients that assumes the
value 7 for four different integer values of x. Show that we cannot have P (x) = 14 for any integer
x.

Source: Problem 212 on p. 47 in the book D. O. Shklarsky, N. N. Chentzov, I. M. Yaglom, The
USSR Olympiad Problem Book, W. H. Freeman and Co., San Francisco and London, 1962.

Solution: We can simplify the problem by replacing P (x) with P (x)− 7. We continue to write
P (x) for this new polynomial. With this change, the question becomes:

Assume that P (x) is a polynomial with integer coefficients that assumes the value 0 for for
different integer values of x. Show that we cannot have P (x) = 4 for any integer x.

Under the assumption, we can assume that the polynomial P (x) can be factored as

P (x) = (A1x+B1)(A2x+B2)(A3x+B3)(A4x+B4)Q(x).

According to a well-known theorem of Gauss, we may assume that the coefficients of all the factors
on the right-hand side are integers.1 If we have P (x0) = 7, four of the factors on the right-hand
side must be ±1, and the fifth one must be ±7 for x = x0; this means that at least three of the
first four factors on the right-hand side are equal to ±1.

Let Akx+ Bk one of these factors. First, the equality Akx0 + Bk = ±1 means that Ak and Bk

are relatively prime. Second, since −Bk/Ak is an integer zero of P (x), this means that we must
have Ak = ±1; by multiplying each of these linear factors by ±1 and compensating for this by
multiplying the remaining factors by ±1, we may assume that Ak = 1 for the three factors for
which Akx0 + Bk = ±1. Two of these three factors have the same value. That is, two of these
factors, say A1x0 + B1 and A2x0 + B2, are equal. Given that A1 = A2 = 1, this means that
B1 = B2. That is, these two factors correspond to the same zero of P (x). This contradicts our
assumptions.

6) (SENIOR 6) Let bn for n ≥ 1 be positive real numbers such that for every sequence of numbers
an ≥ 0 such that an → 0 the series

∑

∞

n=1 anbn converges. Prove that then
∑

∞

n=1 bn also converges.
Source: Problem 3, The University of British Columbia, Department of Mathematics, Qualify-

ing Examination, Analysis September 5, 2017
http://www.problemcorner.or://www.math.ubc.ca/Grad/QualifyingExams/

Solution: Assume, on the contrary, that
∑

∞

n=1 bn diverges, and let sn =
∑n

k=1 bk. Put an =
1/
√
sn. Then an is a nonincreasing sequence such that an → 0. Yet we have

n
∑

k=1

akbk ≥
n
∑

k=1

anbk = an

n
∑

k=1

bk =
1√
sn

sn =
√
sn → ∞.

1Gauss’s theorem says that if a polynomial with integer coefficients can be factors as a product of two polynomials

with rational coefficients, then these factors can be replaced by polynomials with integer coefficients; each of these

latter polynomials is a constant multiple of the corresponding original factor.
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This completes the proof.

7) (SENIOR 7) Writing Q for the set of rationals, show that there are strictly increasing functions
f, g : Q → Q, both of them onto Q such that f(r) + g(r) 6= 0 for any rational number r.

Source: Problem A.228, p. 42, Középiskolai Matematikai Lapok, Vol. 50/1, January 2000,
Proposed by Ervin Fried. See

http://db.komal.hu/scan/2000/01/MAT0001.PS.png.41

Solution: First note that if q1, q2, r1, and r2 are rational numbers with q1 < q2 and r1 < r2
there is a strictly increasing function φ : [q1, q2) ∩ Q → [r1, r2) ∩ Q that is onto. We can simply
take φ to be the linear function

φ(x) = r1 +
r2 − r1
q2 − q1

(x− q1).

Next note that if α and β are irrational numbers, then there is a strictly increasing function
f : Q → Q that is onto such that for all rational x, if x < α then f(x) < β and if x > α then
f(x) > β. To define f for rational x < α, let αn and βn form strictly increasing sequences of rational
numbers such that αn → α and βn → β. Construct f in such a way that f maps [αn, αn+1) ∩ Q

onto [βn, αn+1) ∩ Q. As for x < α1, we may assume that α1 = β1, and for x < α1 we can define
f as the identity function. For x > α, f can be defined in an analogous way, by taking strictly
decreasing sequences of rationals.

Finally, to define f and g as required in the problem, take two irrational numbers, α and β,
and given any rational x, let f be such that f(x) < β if x < α, and f(x) > β if x > α, and let g
be such that g(x) < −β if x < α, and f(x) > −β if x > α. Then f(x) + g(x) < 0 if x < α and
f(x) + g(x) > 0 if x > α. Hence, there is no rational x such that f(x) + g(x) = 0.
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