Senior Prize Exam

Spring 2021

1) Find all positive integers x such that $x^{5}-3 x^{2}=216$.
2) If n is an integer, show that

$$
\frac{n}{6}+\frac{n^{2}}{2}+\frac{n^{3}}{3}
$$

is also an integer.
3) Let n be a positive integer. Assume we are given n (not necessarily distinct) integers such that their sum is 0 and their product is n itself. Prove that n is divisible by 4 .
4) Show that for every integer $n>5$ we have

$$
\left(\frac{n}{2}\right)^{n}>n!.
$$

5) Assume that $P(x)$ is a polynomial with integer coefficients that assumes the value 7 for four different integer values of x. Show that we cannot have $P(x)=14$ for any integer x.
6) Let b_{n} for $n \geq 1$ be positive real numbers such that for every sequence of numbers $a_{n} \geq 0$ such that $a_{n} \rightarrow 0$ the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges. Prove that then $\sum_{n=1}^{\infty} b_{n}$ also converges.
7) Writing \mathbb{Q} for the set of rationals, show that there are strictly increasing functions $f, g: \mathbb{Q} \rightarrow$ \mathbb{Q}, both of them onto \mathbb{Q} such that $f(r)+g(r) \neq 0$ for any rational number r.

Soon after the exam, solutions will appear on the Web Site
http://www.sci.brooklyn.cuny.edu/~mate/prize/2021/

[^0]
[^0]: All computer processing for this manuscript was done under Debian Linux. The Perl programming language was instrumental in collating the problems. $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$ was used for typesetting.

