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The source for each problem is listed below when available; but even when the source is given,
the formulation of the problem may have been changed. Solutions for the problems presented here
were obtained without consulting sources for these solutions even when available, and additional
information on how to solve these problems might be obtained by consulting the original sources.
There was some overlap between the problems on the Junior and Senior prize exams; the problems
common to both exams are listed only once.

1) (JUNIOR 1 and SENIOR 1) Let a and b be integers such that a2 + b2 is divisible by 7. Show
that both a and b are divisible by 7.

Source: Probl 1678, p. 145, Középiskolai Matematikai Lapok, No. 6, Vol. XV, January 1908.
See

http://db.komal.hu/scan/1908/01/90801145.g4.png

Solution: If one of a and b is divisible by 7, it is easy to see that the other one must also be
divisible by 7 for a2 + b2 to be divisible by 7. So assume that neither a nor b is divisible by 7. For
any integer n not divisible by 7, it is clear that n ≡ ±1 mod 7, or n ≡ ±2 mod 7, or n ≡ ±3
mod 7. In these cases we have n2 ≡ 1 mod 7, or n2 ≡ 2 mod 7, or n2 ≡ 4 mod 7, respectively. If
we pick any two from among the numbers 1, 2, and 4, allowing to pick the the same number twice
(instead of picking different numbers), the picked numbers never add up to 7, it follows that a2+b2

is not divisible by 7 if neither a nor b is divisible by 7.

2) (JUNIOR 2 and SENIOR 2) Let a, b, c be integers not all of which are 0, and let 3 +
√
5 be

one of the roots of the equation

ax2 + bx+ c = 0.

Show that its other root is 3−
√
5.

Source: Probl 2163, p. 184, Középiskolai Matematikai Lapok, No. 8, Vol. XIX, March 1912.
See

http://db.komal.hu/scan/1898/06/89806170.g4.png

Solution: First note that since 3 +
√
5 is irrational, we cannot have a = 0. If x1 = 3 +

√
5 and

x2 are the solutions of the above equation, then x1x2 = c/a and x1 + x2 = −b/a. Using the first of
these equations, we have

(1) x2 =
c

a

1

x1
=

c

a

1

3 +
√
5
=

4c

a
(3−

√
5);

the last equation holds since

(3 +
√
5)(3−

√
5) = 9− 5 = 4.

Thus

− b

a
= x1 + x2 = (3 +

√
5) +

(

4c

a
(3−

√
5)

)

= 3

(

1 +
4c

a

)

+
√
5

(

1− 4c

a

)

All computer processing for this manuscript was done under Debian Linux. The Perl programming language was

instrumental in collating the problems. AMS-TEX was used for typesetting.
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Since the left-hand side is rational and everything except for
√
5 on the right-hand side is rational,

the coefficient of
√
5 must be 0; that is, 4c/a = 1. Hence equation (1) shows that we indeed have

x2 = 3−
√
5.

3) (JUNIOR 3 and SENIOR 3) Show that for every positive integer n we have

(2n+ 1)n ≥ (2n)n + (2n− 1)n.

Source: Problem 462, The problems of the All-Soviet-Union mathematical competitions 1961-
1986. See
http://web.archive.org/web/20120825124642/http://pertselv.tripod.com/RusMath.html

Solution: Using the binomial theorem, we have

(2n+ 1)n − (2n− 1)n =
n
∑

k=0

(

n

k

)

1k(2n)n−k −
n
∑

k=0

(

n

k

)

(−1)k(2n)n−k

=
n
∑

k=0
k is odd

2

(

n

k

)

(2n)n−k ≥ 2

(

n

1

)

(2n)n−1 = 2n(2n)n−1 = (2n)n;

here the second equation holds since in the sums to its left the terms for even k cancel; for the
inequality, we dropped all terms except those corresponding to k = 1. This calculation establishes
the inequality to be proved.

4) (JUNIOR 4) Let a, b, c be integers such that

a2 + c2 = 2b2.

Show that c2 − a2 is divisible by 48.
Source: Probl 533, p. 170, Középiskolai Matematikai Lapok, No. 10, Vol. V, June 1898. See

http://db.komal.hu/scan/1898/06/89806170.g4.png

Solution: We need to show that c2 − a2 is divisible by 3 and 16. As for divisibility by 3, this
is clear if both a and c are divisible by 3, so assume that this is not the case.

Next, note that the equation cannot be satisfied if exactly one of a and c is divisible by 3. For
example, if a is not divisible by 3, then a ≡ ±1 mod 3, so a2 ≡ 1 mod 3. If now c is divisible
by 3, then 2b2 ≡ 1 mod 3, and so b2 ≡ 2 ≡ −1 mod 3, which is impossible. The case when a is
divisible by 3 and c is not is similar.

Now assume that neither a nor c are divisible by 3. Then a2 ≡ c2 ≡ 1 mod 3, so c2 − a2 is
divisible by 3.

To show that c2 − a2 is divisible by 16, first note that for the equation above to be satisfied,
a2 + c2 must be even, so a and c must have the same parity. If both a and c are even, then a2 + c2

is divisible by 4, so b is also even according to the equation above. In this case, there are integers
k, l, and m such that a = 2k, b = 2l, and c = 2m. Then the above equation can be written as

(2k)2 + (2m)2 = 2(2l)2,

that is,
k2 +m2 = 2l2,
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This means that k, l, and m satisfy an equation analogous to the one satisfied by a, b, and c. Then,
according to the assertion of the theorem, yet to be proved, m2 − k2 must be divisible by 16, from
which it follows that c2−a2 = 4(m2−k2) is also divisible by 16. That is, we can keep dividing a, b,
and c by 2 until the numbers replacing a and c are both odd; since the numbers so obtained satisfy
an equation similar to the one above, this amounts to saying that in the above equation both a
and c are odd. Making this assumption, we have a2 ≡ c2 ≡ 1 mod 4, and so 2b2 ≡ 2 mod 4. This
cannot be true if b is even; hence we may assume that all of a, b, and c are odd. According to the
above equation, we have

c2 − a2 = 2c2 − (a2 + c2) = 2c2 − 2b2 = 2(c+ b)(c− b).

So, we need to prove that if both c and b are odd, then (c+b)(c−b) is divisible by 8. We distinguish
two cases.

In the first case, assume that both c and b are congruent to 1, or both are congruent to −1
modulo 4. In this case c− b is divisible by 4 and c+ b is divisible by 2; so (c+ b)(c− b) is indeed
divisible by 8.

In the second case, assume that one of c and b is congruent to 1 modulo 4 and the other one is
congruent to −1 modulo 4. In this case, c+ b is divisible by 4 and c− b is divisible by 2. So, again,
(c+ b)(c− b) is divisible by 8.

5) (JUNIOR 5) Find all (complex) solutions of the equation

z4 + z3 + z2 + z + 1 = 0.

The solutions must be expressed in terms of the four operations and roots (such as square roots,
cube roots, fourth roots, etc.).

Solution: First note that

(1) (z − 1)(z4 + z3 + z2 + z + 1) = z5 − 1,

so all solutions of the equation in the problem satisfy the the equation z5− 1 = 0; that is, for any z
satisfying the former equation we have z5 = 1. Hence z4 = z−1 and z2 = z−2. Thus the equation
can be written as

(2) z + z−1 + z2 + z−2 + 1 = 0.

Writing

(3) w = z + z−1,

we have w2 = z2 + 2 + z−2; hence equation (2) can be written as

w2 + w − 1 = 0.

The quadratic formula gives

w =
−1±

√
5

2
.
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Hence, by equation (3) we have

(4) z2 − −1±
√
5

2
z + 1 = 0.

That is, taking the + sign in the ± in (4), we have

z1,4 =

−1+
√
5

2 ±
√

(

−1+
√
5

2

)2

− 4

2
=

−1 +
√
5±

√

−10− 2
√
5

4
=

−1 +
√
5± i

√

10 + 2
√
5

4
,

where z1 refers to the case when the + sign is taken before the imaginary part, and z4, when the −
sign is taken; the numbering of zk will be explained in a note below. Similarly, taking the − sign
in the ± in (4), we have

z2,3 =

−1−
√
5

2 ±
√

(

−1−
√
5

2

)2

− 4

2
=

−1−
√
5±

√

−10 + 2
√
5

4
=

−1−
√
5± i

√

10− 2
√
5

4
,

where z2 refers to the case when the + sign is taken before the imaginary part, and z3, when the
− sign is taken. This gives all four solutions of the equation.

Note: For a complex number ζ, its absolute value |ζ| is its distance from the origin 0 when
graphed in the complex plane; its argument arg ζ is the angle described by the rotation of the
vector 01 to the ray 0ζ, with counterclockwise rotation counting as positive; the argument is only
determined up to an integer multiple of 2π. For two complex numbers ζ1 and ζ2 we have

(5) |ζ1ζ2| = |ζ1||ζ2| and arg(ζ1ζ2) = arg ζ1 arg ζ2.

In view of (1), the equation z5 = 1 has the solutions z5 = 1 in addition to the solutions z1, z2, z3,
z4 listed above. In view of (5), it is clear that |zk| = 1 for k = 1, 2, 3, 4, 5, that is, each zk lies on the
unit circle. It is also clear from (5) that the arguments of these zk are 2πl/5 for l = 1, 2, 3, 4, 5.1 In
fact, it is easy to ascertain that the numbering of zk so chosen that arg zk = 2πk/5 for l = 1, 2, 3, 4, 5.
Thus, the numbers zk are the vertices of a regular pentagon inscribed in the unit circle; the distance
of any two of these vertices is the side of the regular pentagon inscribed into a circle of radius 1.

The vertices z2 and z3 are adjacent and lie on the same vertical line; so their distance is

1

i
(z2 − z3) =

√

10− 2
√
5

2
=

√

5−
√
5

2
.

This is the length of the side of the regular pentagon inscribed in the unit circle.
Using this result, it is easy to describe how to construct a regular pentagon; the following

description was given by Claudius Ptolemy (circa 100–circa 170 AD):
Let AB a diameter of a circle with center O and letD be a point on the circle such that OD ⊥ AB

Let C be the midpoint of the line segment OB, and let E be the point on the line segment AO
such that CE = CD. Then the length of the line segment DE is the side of the regular pentagon

1For l = 5 this gives the argument 2π which is the argument of z5 = 1; this argument can also be taken 0, since

the argument is only determined up to a multiple of 2π.
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inscribed in the given circle. Using the Pythagorean theorem twice, it is easy to verify that this
construction is correct.

6) (JUNIOR 6) Let m be a positive integer. Given 2m + 1 different integers, each of absolute
value not greater than 2m− 1, show that it is possible to choose three numbers among them such
that their sum is 0.

Source: Problem 367, The problems of the All-Soviet-Union mathematical competitions 1961-
1986. See
http://web.archive.org/web/20120825124642/http://pertselv.tripod.com/RusMath.html

Solution: Let S be a set of integers with absolute value ≤ 2m − 1 such that the sum of any
three of its elements is nonzero. We will show that the number of elements of S is ≤ 2m. Before
we do this, note that the set of all odd integers in the given range has the desired property, and it
has exactly 2m elements, so the bound given is exact.

Let s0 be the element of S that has the smallest absolute value; note that if s0 6= 0, −s0 may
also be an element of S, so the choice of s0 is not necessarily unique. In any case, without loss of
generality we may assume that s0 ≥ 0. Assume S has k elements in the range (s0, 2m−1−s0] (this
is interpreted as the empty set if s0 ≥ 2m − 1 − s0). This disallows k elements of S in the range
[−2m + 1,−s0), since −(s0 + s] for s ∈ S ∩ (s0, 2m − 1 − s0] cannot be an element of S, because
no three elements of S may sum to 0. This disallows k elements of S in the range (0,−2m− 1]. A
further s0 elements of the range (−2m + 1, 0] are excluded from among the elements s of S with
s < s0, since none of these elements can be in the range (−s0, 0]. Indeed, 0 cannot be selected as
s in case s0 = 0 since we must have s < s0. It cannot be selected in case s0 > 0 either, since we
have |s| ≥ |s0|. The elements other than 0 in the range (−s0, 0] cannot be selected, either, since
|s| ≥ |s0|. Since the range [−2m + 1, 0) has 2m elements, this allows 2m − 1 − k − s0 elements s
with s < s0 to be in S.

To count the number of elements of S in the range [s0, 2m − 1), among these, we can count s0
plus the k elements in the range (s0, 2m − 1 − s0] Even allowing that all numbers in the range
(2m− 1− s0, 2m− 1] are elements of S, this adds a further (2m− 1)− (2m− 1− s0) = s0 elements
s to S with s ≥ s0. This means that the total number of elements s of S with s ≥ s0 is at most
1 + k + s0. Since the maximum number of elements s of S with s < s0 is 2m − 1 − k − s0, this
means that S has at most (1 + k + s0) + (2m − 1 − k − s0) = 2m elements. This completes the
proof.

7) (JUNIOR 7) Let G be the set of all permutations of the set Z of all integers (positive, negative,
or zero); that is, the elements of G are one-to-one mappings of Z onto itself. For f, g ∈ G write

fg
def
= f ◦ g (i.e., f composition g). Write id for the identity permutation (i.e., id(k) = k for all

k ∈ Z). For a positive integer n, write fn def
= f ◦ f ◦ . . . ◦ f (f repeated n times).

Give an example of f, g ∈ G such that f2 = g2 = id and yet (fg)n 6= id for any positive integer n.
Source: Based on: Algebra Qualifying Exam, May 2017, p. 2, Problem 1d, Qualifying Exams

in Mathematics, University of Missouri. The original problem is formulated in a group theory
language; we avoided this, so as to make the problem more widely accessible. See

http://www.problemcorner.or://www.math.missouri.edu/grad/qualifying-exams

Solution: For an arbitrary k ∈ Z, put

f(2k) = 2k − 1 and f(2k − 1) = 2k

and
g(2k) = 2k + 1 and g(2k + 1) = 2k
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It is then easy to see that f2 = g2 = id. Further, for each k ∈ Z we have fg(2k) = 2k + 2. Hence
we do not have (fg)n = id for any positive integer n; indeed, we have (fg)n(0) = 2n.

8) (SENIOR 4) Let f : [0, 1] → [0, 1] be a continuous function. Show that f(x) = x for some
x ∈ [0, 1]. (You can use without proof any result described in basic calculus courses or any result
proved in standard advanced calculus courses.)

Source: Basic Exam in Advanced Calculus/Linear Algebra, Fall 2003, University of Mas-
sachusetts Amherst. See

https://www.math.umass.edu/graduate/sample-qualifying-exams

Solution: Write g(x) = f(x)− x. Then g is continuous on [0, 1], g(0) ≥ 0, and g(1) ≤ 0. Hence
g(x) = 0 for some x ∈ [0, 1] by the Intermediate Value Theorem. For this x we have f(x) = x.

9) (SENIOR 5) Let f be a differentiable function on the real line such that f(0) = 0 and
f ′(x) > f(x) for all real x. Show that f(x) > 0 for all x > 0.

Source: Problem 6.20, p. 101 in Asuman G. Aksoy and Mohamed A. Khamsi, A Problem Book
in Real Analysis, Springer, New York, Dordrecht, Heidelberg, London, 2009.

Solution: According to the assumption, we have f ′(0) > f(0) = 0; that is,

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

f(x)

x
> 0;

therefore, there is an ǫ > 0 such that

(1) f(x) > 0 for all x with 0 < x < ǫ.

Assume that f(x0) < 0 for some x0 > 0. Then there is an x with 0 < x < x0 such that f(x) = 0
by the Intermediate-Value Theorem, since f , being differentiable, is continuous. Let

x1 = min{x > 0 : f(x) = 0}.

This minimum exists, since the set on the right-hand side is closed in view of (1), given that f is
continuous. Clearly we have x1 > 0 and f(x1) = 0. By the Mean-Value Theorem of Differentiation,
there is a ξ with 0 < ξ < x1 such that

f ′(ξ)x1 = f ′(x1)(x1 − 0) = f(x1)− f(0) = 0.

Hence f(ξ) < f ′(ξ) = 0 in view of our assumptions, which is a contradiction, since f(ξ) > 0 for all
ξ with 0 < ξ < x1 by the definition of x1. This contradiction shows that f(x) > 0 for all x > 0.

10) (SENIOR 6) Let n ≥ 3 be an odd integer, and for k with 0 ≤ k ≤ n let pk be a polynomial of
degree k. Assume, further, that p′k(x) = pk−1(x) for k with 1 ≤ k ≤ n, where the prime indicates
derivative. Finally, assume that pk(−1) = pk(0) = pk(1) for odd k with 3 ≤ k ≤ n. Show that
pn(x) 6= 0 for x 6= 0 with −1 < x < 1.

Solution: Assume, on the contrary that there is an xn with xn 6= 0 and −1 < xn < 1 such that
pn(xn) = 0. We will then show by induction on k stepping down from k = n through odd numbers
to k = 3 that that given any odd k with 3 ≤ k ≤ n, there is an xk with xk 6= 0 and −1 < xk < 1
such that pk(x) 6= 0. For k = 3 this, of course represents a contradiction, since it means that the
degree 3 polynomial p3 has four distinct zeros: x3, −1, 0, and 1.
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Indeed, assume, there is an xk with xk 6= 0 and −1 < xk < 1 such that pk(x) 6= 0. for some odd
k with 3 < k ≤ n. We will then show that the analogous statement is also true with k−2 replacing
k. Indeed, noting that pk−1 = p′k by Rolle’s theorem, there must be pairwise distinct real numbers
ξ1, ξ2, and ξ3 such that pk−1(x1) = pk−1(x1) = pk−1(x1) = 0; ξ1, ξ2, and ξ3 are located in the three
open intervals determined by the adjacent ones among the numbers −1, 0, 1, and xk. We may
assume that ξ1 < ξ2 < ξ3. Then, noting that pk−2 = p′k−1 using Rolle’s theorem again, there are η1
and η2 with ξ1 < η1 < ξ2 < η2 < ξ3. such that pk−2(η1) = p(η2) = 0. We have −1 < η1 < η2 < 1,
so we have η1 6= 0 or η2 6= 0. Pick xk−2 = η1 or xk−2 = η2 such that xk−2 6= 0. This shows that
the above statement is true with k − 2 replacing k, completing the induction and establishing the
assertion of for all odd k with 3 ≤ k ≤ n.

As we remarked above, for k = 3 this is a contradiction, completing the proof of the assertion
in the problem.

Note: The problem is based on a property of the Bernoulli polynomials Bk(x). These polyno-
mials are defined by the equation

zexz

ez − 1
=

∞
∑

k=0

Bk(x)

k!
zk,

where, for fixed x, the series on the right is the Taylor expansion at z = 0 of the function on the
left-hand side. It can be show Bk(x) is a polynomial of degree k of x, and B′

k+1(x) = Bk(x) for
all k ≥ 0. Further Bk(1/2) = 0 for odd k ≥ 1, and Bk(0) = Bk(1) = 0 for odd k ≥ 3. Using these
properties, one can show by the argument used in the solution of the above problem that Bk(x)
cannot have zeros other than x = 1/2 in the interval (0, 1), and the zero at x = 1/2 is simple (i.e., it
has multiplicity 1). This fact is important for obtaining a useful form of the remainder term of the
Euler–Maclaurin summation formula. See Section 24, The Euler–Maclaurin Summation Formula,
pp. 84–93, in my notes Introduction to Numerical Analysis with C Programs at

http://www.sci.brooklyn.cuny.edu/˜mate/nml/

as the file numanal.pdf. According to what we said about the Bernoulli polynomials, the polyno-
mials

(1) pk(x) = αkBk

(

(x+ 1)/2
)

with appropriate constants αk satisfy the assumptions of the problem.

It is also easy to see that the polynomials described in (1) are the only polynomials satisfying the
assumptions, since the polynomials are uniquely determined, aside from a multiplicative constant.
This is because p3(x) = c(x − 1)x(x + 1) for some constant c 6= 0, and if pk(x) is uniquely
determined for some odd integer k ≥ 3, then pk+2 is also uniquely determined by the requirement
that p′′k+2(x) = pk(x) and pk+2(1) = pk+2(0) = 0. Indeed, the coefficient of the term xl for
l ≥ 2 in polynomial pk+2(x) is determined by the equation p′′k+2(x) = pk(x). The requirement
that pk+2(0) = 0 implies that the constant term of pk+2(x) is 0, and then the requirement that
pk+2(1) = 0 allows one to determine the coefficient of x in pk+2(x).

Here we did not make use of the equation pk+2(−1) = 0. This equation may in fact cause trouble
in that it may give a different value for the coefficient of x in pk+2(x) that we obtained from the
equation pk+2(1) = 0. That this does not happens would need to be proven, but since the Bernoulli
polynomials show that the polynomials pk as described do exist, this we do not need to prove this.
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11) (SENIOR 7) Given integers m and n with 0 ≤ m ≤ n, show that

n
∑

k=0

(−1)kkm

k!(n− k)!
=

{

(−1)n if m = n,

0 if 0 ≤ m < n.
.

Here, in case k = 0 and m = 0, take km = 1 (normally, 00 is undefined). Further, given a

nonnegative integer l, l!
def
=
∏l

k=1 k; that is, for l = 0 we have l! = 1, and for l ≥ 1 we have
l! = 1 · 2 · . . . · l.

Source: Based on Problem 3/1, May 2018, PhD Entrance Examination, p. 7, Institute of
Mathematics, Faculty of Science, Eötvös Loránd University, Budapest, Hungary (Eötvös Loránd
uses the Hungarian name order; in English speaking countries, he is known as Roland von Eötvös,
the inventor of the Eötvös pendulum, a variation of the torsion balance). See

https://www.math.elte.hu/en/phd-entrance-exam/

Solution: Throughout the discussion below, we use the interpretation 00 = 1 wherever it occurs
as a result of substitution certain values for the variables in an expression.2 The identity to be
proved is certainly true in case n = m = 0, since the sum on the left-hand side only has a single
term, and this term equals 1. It is also true in case n > m = 0. Indeed, in this case, the sum on
the left-hand side is

(1)
n
∑

k=0

(−1)k

k!(n− k)!
=

1

n!

n
∑

k=0

(

n

k

)

(−1)k =
1

n!
(1− 1)n = 0;

here the first equation is true since
(

n

k

)

=
n!

k!(n− k)!
,

and the second one holds by the Binomial Theorem.3

We have yet to establish the identity in case n ≥ m ≥ 1. Using induction, assume that above
identity is true with n′ = n − 1 and m′ with 0 ≤ m′ ≤ n′ replacing n and m. In view of (1), we
have

(2)

−
n
∑

k=0

(−1)kkm

k!(n− k)!
=

n
∑

k=0

(−1)k(nm − km)

k!(n− k)!
=

n−1
∑

k=0

(−1)k(nm − km)

k!(n− k)!

=

n−1
∑

k=0

(−1)k(n− k)

k!(n− k)!

m−1
∑

l=0

klnm−1−l =

m−1
∑

l=0

nm−1−l

n−1
∑

k=0

(−1)kkl(n− k)

k!(n− k)!

=
m−1
∑

l=0

nm−1−l

n−1
∑

k=0

(−1)kkl

k!(n− 1− k)!
;

here the second equation is true since the summand to its left is 0 in case k = n. The third equation
follows from the identity4

nm − km = (n− k)
m−1
∑

l=0

klnm−1−l.

2Note that the 00 = 1 convention is common when writing polynomials or power series using the
∑

notation.
3Note that here we used the stipulation that 00 = 1.
4In this identity, we also need to take the interpretation 00 = 1 when k = 0.
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Finally, the last equation‘holds since (n− k)! = (n− k)(n− 1− k)!.
By the induction hypothesis, the inner sum on the right-hand side of (2) is 0 unless l = n − 1.

If l = n − 1, which is possible only in case m = n, this sum is (−1)n−1. Since the left-hand side
equals the left-hand side of the identity to be established, this identity is indeed valid.

Note: The problem source states the identity to be proved as

(3)
n
∑

k=0

(−1)k
(

n

k

)

(n− k)n = n!.

Noting that
(

n

k

)

=
n!

k!(n− k)!
.

and dividing both sides of this identity by n!, we obtain

n
∑

k=0

(−1)k
1

k!(n− k)!
(n− k)n = 1.

Using l with l = n− k for the summation variable instead of k, we obtain

n
∑

l=0

(−1)n−l 1

l!(n− l)!
ln = 1.

Multiplying both sides by (−1)n, noting that (−1)−l = (−1)l, and writing k instead of l for the
summation valuable, we obtain

n
∑

k=0

(−1)kkm

k!(n− k)!
= (−1)n.

This is the case m = n of the identity stated in the problem. We extended the statement to allow
0 ≤ m ≤ n; this is needed in order to support the induction in the proof; this makes the solution
of the problem easier.

The problem appeared in the Combinatorics section of the exam. We wonder whether the reason
for this was that the identity in question perhaps has a direct combinatorial interpretation. We did
not examine this question.

Induction proof of (3): In order to prove (3) by induction, we extend it in a similar way as
we stated the problem above. Given integers m and n with 0 ≤ m ≤ n, we have

(4)

n
∑

k=0

(−1)k
(

n

k

)

(n− k)m =

{

n! if m = n,

0 if 0 ≤ m < n.
;

similarly, as in the statement of the problem above, we need to take (n − k)m = 1 in case n = k
and m = 0. With this stipulation, equation (4) is true in case m = n = 0; it is also true for all
n ≥ 1 if m = 0 in view of (1).

To establish the identity in case n ≥ m ≥ 1, assume that it is true with n′ = n − 1 and m′

with 0 ≤ m′ ≤ n′ replacing n and m. Extending the definition of the binomial coefficient with the
stipulation that

(

n

k

)

= 0 if k < 0 or k > n

9



we can drop the limits of the summation in (4) and take the sum from −∞ to ∞; further, the
identity

(

n

k

)

=

(

n− 1

k − 1

)

+

(

n− 1

k

)

is valid for all integers n ≥ 1 and for all k. Thus, the left-hand side of (4) becomes

(5)

∞
∑

k=−∞

(−1)k
(

n

k

)

(n− k)m =
∞
∑

k=−∞

(−1)k

(

(

n− 1

k − 1

)

+

(

n− 1

k

)

)

(n− k)m

=
∞
∑

k=−∞

(−1)k
(

n− 1

k

)

(

(n− k)m − (n− k − 1)m
)

.

The last equation is the result of what is called Abel rearrangement or partial summation, as we
are to explain.

Partial summation (or summation by parts) is described by the formula

ν
∑

k=µ

ak(bk − bk−1) = aµbµ−1 − aν+1bν +
ν
∑

k=µ

(ak − ak+1)bk

for integers µ and ν with µ ≤ ν and numbers ak, bk. This is easy to verify, since each term on one
side can be matched up with a corresponding term on the other side. If ak and bk are two-way
infinite sequences with at least one of them having only finitely many nonzero terms (so that there
are no issues of convergence), the identity can be more simply written as

∞
∑

k=−∞

ak(bk − bk−1) =
∞
∑

k=−∞

(ak − ak+1)bk.

Above, this identity was used with

ak = (n− k)m and bk = (−1)k
(

n− 1

k

)

.

Continuing the calculation above by using the Binomial Theorem for (n− k− 1)m =
(

(n− k) +

(−1)
)m

, the right-hand side of (5) equals

∞
∑

k=−∞

(−1)k
(

n− 1

k

)

(

(n− k)m −
(

(n− k)− 1
)m)

=
∞
∑

k=−∞

(−1)k
(

n− 1

k

)(

(n− k)m −
m
∑

l=0

(

m

l

)

(n− k)m−l(−1)l
)

= −
∞
∑

k=−∞

(−1)k
(

n− 1

k

) m
∑

l=1

(

m

l

)

(n− k)m−l(−1)l

= −
m
∑

l=1

(−1)l
(

m

l

) ∞
∑

k=−∞

(−1)k
(

n− 1

k

)

(n− k)m−l.
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By the induction hypothesis, all terms of the inner sum are 0 except in case m = n and l = 1,
in which case it is (n − 1)!. This shows that the left-hand side of (5) (which is the same as the
left-hand side of (4)) is 0, except in case m = n, in which case it is

(

n

1

)

(n− 1)! = n(n− 1)! = n!.

This completes the proof of (4).
A simpler proof involving derivatives: Given a real x and integers m and n with n ≥ m ≥ 0,

we will show that

(6) f(x, n,m)
def
=

n
∑

k=0

(−1)k(k + x)m

k!(n− k)!
=

{

(−1)n if m = n,

0 if 0 ≤ m < n.
.

This of course immediately follows from the statement in the problem, since if we expand (k+x)m

with the aid of the binomial theorem, the coefficients of all powers of x are 0 except for that of
x0, according to the equation stated in the problem. It is, however, easier to prove equation (6)
directly by induction, and then to establish the statement in the problem above as a consequence.
Indeed, it is easy to see that f(x, 0, 0) = 1, and that we have f(x, n, 0) = 0 according to (1) if
n > 0. Using induction, given integers m > 0, n ≥ m, and real x, assume that (6) is valid if m, n,
and x are replaced by m′, n′, and x′, where m′ ≤ m, n′ ≤ n, with strict inequality holding in at
least one of these inequalities, given that 0 ≤ m′ ≤ n′ are integers and x′ is a real.

For a start, it immediately follows that f(x, n,m) does not depend on x, since (d/dx)f(x, n,m) =
mf(x, n,m− 1) = 0 by the induction hypotheses. We have

f(x, n,m) = f(−n, n,m) =
n
∑

k=0

(−1)k(k − n)m

k!(n− k)!
=

n−1
∑

k=0

(−1)k(k − n)m

k!(n− k)!

= −
n−1
∑

k=0

(−1)k(k − n)m−1

k!(n− k − 1)!
= −f(−n, n− 1,m− 1);

here the first equality holds, since, as we pointed out, f(x, n,m), does not depend on x. The
second one holds since the term corresponding to k = n to its left is 0. The third one holds since
(n − k)! = (n − k)(n − k − 1)!. Finally, the right-hand side equals (−1)m if n = m and it is 0 if
m < n, by the induction hypothesis. This completes the proof.
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