Junior Prize Exam
 Spring 2022

1) Let a and b be integers such that $a^{2}+b^{2}$ is divisible by 7 . Show that both a and b are divisible by 7 .
2) Let a, b, c be integers not all of which are 0 , and let $3+\sqrt{5}$ be one of the roots of the equation

$$
a x^{2}+b x+c=0
$$

Show that its other root is $3-\sqrt{5}$.
3) Show that for every positive integer n we have

$$
(2 n+1)^{n} \geq(2 n)^{n}+(2 n-1)^{n} .
$$

4) Let a, b, c be integers such that

$$
a^{2}+c^{2}=2 b^{2}
$$

Show that $c^{2}-a^{2}$ is divisible by 48 .
5) Find all (complex) solutions of the equation

$$
z^{4}+z^{3}+z^{2}+z+1=0
$$

The solutions must be expressed in terms of the four operations and roots (such as square roots, cube roots, fourth roots, etc.).
6) Let m be a positive integer. Given $2 m+1$ different integers, each of absolute value not greater than $2 m-1$, show that it is possible to choose three numbers among them such that their sum is 0 .
7) Let G be the set of all permutations of the set \mathbb{Z} of all integers (positive, negative, or zero); that is, the elements of G are one-to-one mappings of \mathbb{Z} onto itself. For $f, g \in G$ write $f g \stackrel{\text { def }}{=} f \circ g$ (i.e., f composition g). Write id for the identity permutation (i.e., $\operatorname{id}(k)=k$ for all $k \in \mathbb{Z}$). For a positive integer n, write $f^{n} \stackrel{\text { def }}{=} f \circ f \circ \ldots \circ f(f$ repeated n times $)$.

Give an example of $f, g \in G$ such that $f^{2}=g^{2}=\mathrm{id}$ and yet $(f g)^{n} \neq \mathrm{id}$ for any positive integer n.
Soon after the exam, solutions will appear on the Web Site
http://www.sci.brooklyn.cuny.edu/~~mate/prize/2022/

[^0]
[^0]: All computer processing for this manuscript was done under Debian Linux. The Perl programming language was instrumental in collating the problems. $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E} X}$ was used for typesetting.

