Senior Prize Exam

Spring 2022

1) Let a and b be integers such that $a^{2}+b^{2}$ is divisible by 7 . Show that both a and b are divisible by 7 .
2) Let a, b, c be integers not all of which are 0 , and let $3+\sqrt{5}$ be one of the roots of the equation

$$
a x^{2}+b x+c=0
$$

Show that its other root is $3-\sqrt{5}$.
3) Show that for every positive integer n we have

$$
(2 n+1)^{n} \geq(2 n)^{n}+(2 n-1)^{n}
$$

4) Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. Show that $f(x)=x$ for some $x \in[0,1]$. (You can use without proof any result described in basic calculus courses or any result proved in standard advanced calculus courses.)
5) Let f be a differentiable function on the real line such that $f(0)=0$ and $f^{\prime}(x)>f(x)$ for all real x. Show that $f(x)>0$ for all $x>0$.
6) Let $n \geq 3$ be an odd integer, and for k with $0 \leq k \leq n$ let p_{k} be a polynomial of degree k. Assume, further, that $p_{k}^{\prime}(x)=p_{k-1}(x)$ for k with $1 \leq k \leq n$, where the prime indicates derivative. Finally, assume that $p_{k}(-1)=p_{k}(0)=p_{k}(1)$ for odd k with $3 \leq k \leq n$. Show that $p_{n}(x) \neq 0$ for $x \neq 0$ with $-1<x<1$.
7) Given integers m and n with $0 \leq m \leq n$, show that

$$
\sum_{k=0}^{n} \frac{(-1)^{k} k^{m}}{k!(n-k)!}= \begin{cases}(-1)^{n} & \text { if } m=n \\ 0 & \text { if } 0 \leq m<n\end{cases}
$$

Here, in case $k=0$ and $m=0$, take $k^{m}=1$ (normally, 0^{0} is undefined). Further, given a nonnegative integer $l, l!\stackrel{\text { def }}{=} \prod_{k=1}^{l} k$; that is, for $l=0$ we have $l!=1$, and for $l \geq 1$ we have $l!=1 \cdot 2 \cdot \ldots \cdot l$.

Soon after the exam, solutions will appear on the Web Site
http://www.sci.brooklyn.cuny.edu/~mate/prize/2022/

[^0]
[^0]: All computer processing for this manuscript was done under Debian Linux. The Perl programming language was instrumental in collating the problems. $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E} X}$ was used for typesetting.

