Senior Prize Exam Spring 2022

1) Let a and b be integers such that $a^2 + b^2$ is divisible by 7. Show that both a and b are divisible by 7.

2) Let a, b, c be integers not all of which are 0, and let $3 + \sqrt{5}$ be one of the roots of the equation

$$ax^2 + bx + c = 0.$$

Show that its other root is $3 - \sqrt{5}$.

3) Show that for every positive integer n we have

$$(2n+1)^n \ge (2n)^n + (2n-1)^n.$$

4) Let $f : [0,1] \to [0,1]$ be a continuous function. Show that f(x) = x for some $x \in [0,1]$. (You can use without proof any result described in basic calculus courses or any result proved in standard advanced calculus courses.)

5) Let f be a differentiable function on the real line such that f(0) = 0 and f'(x) > f(x) for all real x. Show that f(x) > 0 for all x > 0.

6) Let $n \ge 3$ be an odd integer, and for k with $0 \le k \le n$ let p_k be a polynomial of degree k. Assume, further, that $p'_k(x) = p_{k-1}(x)$ for k with $1 \le k \le n$, where the prime indicates derivative. Finally, assume that $p_k(-1) = p_k(0) = p_k(1)$ for odd k with $3 \le k \le n$. Show that $p_n(x) \ne 0$ for $x \ne 0$ with -1 < x < 1.

7) Given integers m and n with $0 \le m \le n$, show that

$$\sum_{k=0}^{n} \frac{(-1)^k k^m}{k! (n-k)!} = \begin{cases} (-1)^n & \text{if } m = n, \\ 0 & \text{if } 0 \le m < n. \end{cases}$$

Here, in case k = 0 and m = 0, take $k^m = 1$ (normally, 0^0 is undefined). Further, given a nonnegative integer l, $l! \stackrel{def}{=} \prod_{k=1}^{l} k$; that is, for l = 0 we have l! = 1, and for $l \ge 1$ we have $l! = 1 \cdot 2 \cdot \ldots \cdot l$.

SOON AFTER THE EXAM, SOLUTIONS WILL APPEAR ON THE WEB SITE http://www.sci.brooklyn.cuny.edu/~mate/prize/2022/

All computer processing for this manuscript was done under Debian Linux. The Perl programming language was instrumental in collating the problems. AMS-T_EX was used for typesetting.