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The source for each problem is listed below when available; but even when the source is given,
the formulation of the problem may have been changed. Solutions for the problems presented here
were obtained without consulting sources for these solutions even when available, and additional
information on how to solve these problems might be obtained by consulting the original sources.
There was some overlap between the problems on the Junior and Senior prize exams; the problems
common to both exams are listed only once.

1) (JUNIOR 1 and SENIOR 1) Find all pairs of positive integers (x, y) such that x2 + y2 = 172.
Solution: Of course it is possible to test all pairs of integers (x, y) with 0 < x, y < 17 to see

which ones work; however, it is possible to cut down on the number of pairs that need to be tested.
First, note that one of x and y must be even, the other one must be odd. Without loss of

generality, we may assume that x is even. We have

y2 = 172 − x2 = (17− x)(17 + x).

Assume p is a common prime factor of 17− x and 17+ x; then p must have a divisor of (17− x) +
(17 + x) = 2 · 17; since x is even, we cannot have p = 2; we cannot have p = 17, either, since 17
cannot be a divisor of y2, as 0 < y < 17. That is, 17 − x and 17 − x must be relatively prime.
Since their product is a square, both of them must be squares. This is because in a square, all
prime factors must occur with an even exponent; since 17− x and 17 + x have no common prime
factors, each separately must be a product of even powers of primes. That is, there are positive
odd integers a and b such that a2 = 17− x and b2 = 17 + x; that is,

a2 + b2 = 34;

note that we must also have a < b since x > 0. Here it is quite easy to test all possibilities for a
and b, and we obtain the solutions a = 3 and b = 5

This leads to the solution x = 17 − 32 = 8 and y2 = 172 − 82 = 152, that is x = 8 and y = 15;
this is the only solution for x, y with x even. The other solution is x = 15 and y = 8.

2) (JUNIOR 2 and SENIOR 2) In a manuscript of 60 sheets, the pages are numbered by the
numbers 1, 2, 3, . . . , 120 in the usual way. Unfortunately, some sheets were lost. The sum of the
page numbers on the remaining pages is 7159. How many sheets were lost?

Source: Problem 1, Dániel Arany Mathematics Competition, academic year 2012/2013, Begin-
ners Category I, round 3 (final). See p. 9,

https://matek.fazekas.hu/index.php?option=com_content&view= article&id=57:arany

-daniel-matematikaverseny&catid=26&Itemid=185

Solution: The sum of the page numbers on all of the pages would be

120
∑

i=1

i =
120 · 121

2
= 7260.

All computer processing for this manuscript was done under Debian Linux. The Perl programming language was

instrumental in collating the problems. AMS-TEX was used for typesetting.
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Thus, the page numbers on the missing pages add up to 7260− 7159 = 101 = 4 · 26− 3.
The page numbers on the kth page are 2k − 1 and 2k; these add up to 4k − 1. For these to add

up to 4 · 26 − 3 one needs 4l + 3 sheets for l = 0, 1, 2, 3 . . . , that is 3, 7, 11, . . . distinct sheets.
However, even on the first 7 sheets the page numbers add up to

4 · (1 + 2 + 3 + 4 + 5 + 6 + 7)− 7 = 4 · 7 · 8
2

− 7 = 105,

so 7 or more sheets could not have been lost. So exactly 3 sheets were lost.

3) (JUNIOR 3 and SENIOR 3) Given a 5×5 matrix (a list of numbers, called entries, arranged in
a rectangle with 5 rows and 5 columns), with each of the entries being 1 or −1. Form the products
of the entries on each of the rows and each of the columns, obtaining 10 products altogether. Show
that the sum of all these products cannot be 0.

Source: 41th László Kalmár Mathematics competition for 8th grade students, county round,
2012, Problem 5. See

https://www.kalmarverseny.hu/2012/07/30/kalmar-laszlo-matematikaverseny-feladat

sorok-es-megoldasaik-2012/

Solution: Each of the row products and each of the column products is ±1. Let a be the
number of row products that are −1, and let b be the number of column products that are −1.
The product of the row products and the product of the column products is equal to the product
of all entries of the matrix. Hence (−1)a = (−1)b; that is, a and b have the same parity - thus a+ b
is even. The sum of all row products plus the sum of all column products is

(−a) + (5− a) + (−b) + (5− a) = 10− 2(a+ b).

As a + b is even, the right-hand side is not divisible by 4; hence it cannot be 0, which is what we
wanted to prove.

4) (JUNIOR 4) Given a triangle such that all its altitudes are at least 1. Show that its area is

at least 1/
√
3.

Source: 47th László Kalmár Mathematics competition for 8th grade students, National final,
November 6, 2020, Problem 4. See

https://www.kalmarverseny.hu/2020/07/30/kalmar-laszlo-matematikaverseny-feladat

sorok-es-megoldasaik-2020/

First Solution: Let T be a triangle satisfying the requirements, write t for its area, a, b, c for
its sides, and ha, hb, hc for the altitudes corresponding to these sides in turn. We have

2t = aha = bhb = chc.

Let T ′ be a triangle with sides

a′ =
a

2t
=

1

ha

, b′ =
b

2t
=

1

hb

, and c′ =
c

2t
=

1

hb

.

T ′ is a triangle similar to T , its linear size being 1/(2t) times that of T , so its area is 1/(2t)2 times
that of the area of T ; that is, its area is 1/(4t). Since the only condition of T is that its altitudes
be ≥ 1, the only condition on T ′ is that its sides be ≤ 1. Under these conditions, we have to find
the minimum value of t, that is, the maximum value of the area of T ′, i.e., of 1/(4t).
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So, we can reformulate the question as follows: given a triangle with sides a′, b′, c′ ≤ 1, what is
its maximum area. In doing so, without loss of generality we may assume that a′ = 1. Indeed, if
all sides of the triangle are strictly less than 1, then we may increase each side with the same factor
so as to make the largest one equal to 1; we may assume that this side is the side a′. Then look
for the triangle for which the altitude h′

a erected on the side a′ is the largest possible. This clearly

happens when we also have b′ = c′ = 1. om which case h′
a =

√
3/2 giving the maximum area of T ′:

1/(4t) =
√
3/4. That is, the minimum value of t is 1/

√
3, as we wanted to show.

Second Solution: First note that in the equilateral triangle with sides 2/
√
3, all altitudes have

length 1, and its area is 1/
√
3.

Assume that △ABC is a triangle with all its altitudes ≥ 1 that has the least possible area. Then
one of the altitudes must be exactly 1; indeed, if all altitudes were strictly greater than 1, then the
triangle could be replaced with a smaller similar triangle in which one altitude is exactly 1.

Without loss of generality, we may assume that the altitude hc incident to the vertex C length 1,
and further, that AC ≤ BC. Placing the triangle in the coordinate system, we may assume that A
has coordinates (0, 0), B has coordinates (b, 0) for some b > 0. Assume that C is above the x-axis
and the altitude hc is 1. Then C must have y-coordinate 1; writing u for the x-coordinate of C,
we must have b ≥ 2u since AC ≤ BC. Finally, so as to have ha ≥ 1 for the altitude incident to A,
the line CB must not intersect the circle of radius 1 centered at A(0, 0) (so we must have u > 0).
For the triangle having the least possible area, AB must be as small as possible, since the area
of the triangle is AB · hc/2 = AB/2. If BC is not tangent to this circle (in the first quadrant),
we may move this line to the left parallel to its original position until it becomes tangent to the
circle, since thereby the side AB would decrease. After this move, we will have ha = 1. Since such
a move would decrease u and b, the x-coordinates of C and B, respectively, by the same amount,
if we started out with b > 2u, this inequality will also be true for the new values of b and u (note
that we must have u > 0, as we remarked above, since BC does not enter the inside of the circle
in question, and the y-coordinate of C is 1, the radius of the circle).

After this point, we can decrease AB by moving B to the left and C to the right while keeping
BC tangent to the circle; This will increase u and decrease b. However, we must stop when we have
b = 2u. This is important, since if we moved past this point and we would end up with b < 2u, and
then we would have AC > BC. Then, since we still have ha = 1 and we have AC · hb = BC · ha,
since both sides are equal to twice the area of △ABC, we would then have

hb =
BC

AC
ha < 1,

contrary to the requirement that all three altitudes must be at least 1. The optimal case gives
AC = BC, when hb = ha = hc = 1, in which case △ABC is equilateral, and AB = BC = AC =
2/
√
3, and the area of △ABC is 1/

√
3.

5) (JUNIOR 5) Given 50 positive integers whose sum is at least 100, show that it is possible to
choose 3 of them whose sum is at least 6.

Source: Hungarian Mathematics Highschool competitions. Fazekas Gymnasium, 7c, segment
III, round 4. It can be located in the file II4.HTM after unzipping the file MATVERS.ZIP at

http://www.mek.iif.hu/porta/szint/termesz/matemat/matvers/

In Hungarian.

Solution: Let the numbers be a1, a2, . . . , a50, Assume that for any i, j, k with 1 ≤ i < j < l ≤ 50
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we have ai + aj + ak ≤ 5. Summing for all such triples we then have

(1)
∑

i,j,k:1≤i<j<k≤50

(ai + aj + ak) ≤ 5 ·
(

50

3

)

;

the binomial coefficient on the right-hand side is the number of triples summed. In this sum, for
each l with 1 ≤ l ≤ 50, al occurs

(

49

2

)

times. That is, the sum onf the left-hand side of (1) equals

(2)

(

49

2

) 50
∑

l=1

al ≥ 100

(

49

2

)

.

This is, however impossible, since the right-hand side of (2) is smaller than that of (1). Indeed,

5 ·
(

50

3

)

= 5 · 50 · 49 · 48
6

=
125

3
· 49 · 48

2
=

125

3
·
(

49

2

)

< 100 ·
(

49

2

)

.

The proof is complete.

6) (JUNIOR 6) At a dinner party, there are 6 guests, among whom everybody knows at least
one other guest (knowing another is symmetric, so if A knows B, then B also knows A). Among
the first five guests, each one knows a different number of other guests. How many guests does the
sixth guest know?

Source: Based on Problem 3, Dániel Arany Mathematics Competition, academic year
2012/2013, Beginners Category I-II, round I. See p. 2,
https://matek.fazekas.hu/index.php?option=com_content&view= article&id=57:arany

-daniel-matematikaverseny&catid=26&Itemid=185

Solution: In a more mathematical language, one can talk about a graph of six vertices (points)
where the degree (the number of edges incident to a vertex) is different for each of the first five
vertices, and each of these degrees is at least 1. This means that the degrees of the first 5 points
are 1, 2, 3, 4, 5, in some order.

Label the vertices as P1, P2, P3, P4, P5, and P6. Write degP for the degree of point P . Without
loss of generality, we may assume that degP1 = 5, degP2 = 1, degP3 = 4, degP4 = 2, degP5 = 3.
Then P1 must be connected to each of P2, P3, P4, P5, P6. P2 is already connected to P1, and
it cannot be connected to any other vertex. P3 must be connected to each of P4, P5, P6. P4

already connected to P1 and P3, and it cannot be connected to any other vertex. Then P5 must be
connected to P6. This shows that P6 is connected to P1, P3, and P5. Thus, the degree of P6 is 3.
That is, the sixth guest knows three other guests.

7) (JUNIOR 7) One places dominoes on a 6 × 6 chess board in such a way that every field is
covered and no dominoes overlap. Each domino completely covers two adjacent fields. Show that
among the 5 horizontal and 5 vertical lines separating the fields, there is at least one that is not
cut by any dominoes.

Source: Problem 3, Országos Középiskolai Tanulmányi Verseny matematikából (National High-
school Competition n Mathematics, Hungary) 1962, Category 1, round 2, grades 11-12

http://versenyvizsga.hu/external/vvszuro/vvszuro.php#2

Solution: In each column of the chessboard, a vertical domino occupies two fields, so there must
also be an even number of fields covered by horizontal dominoes. Therefore each vertical line must
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be cut by an even number of dominoes. Indeed, in the column to the left of the first vertical line
cut by an odd number of dominoes there would be an odd number of fields covered by horizontal
dominoes. Thus, to cut all five vertical lines, one needs at least 10 horizontal dominoes.

The same is true also for cutting horizontal lines, so one also needs at least 10 vertical dominoes.
However, the total number of dominoes is 18, since there are 36 fields, so there are not enough
dominoes to cut all vertical and horizontal lines.

8) (SENIOR 4) In a convex quadrilateral �ABCD there is an internal P point such that the
triangles△ABP , △BCP , △CDP , and△DAP all have the same area. Show that P is the midpoint
of one of the diagonals of the quadrilateral �ABCD.

Source: Hungarian Mathematics Highschool competitions. Fazekas Gymnasium, 7c, segment
III, round 7. It can be located in the file II4.HTM after unzipping the file MATVERS.ZIP at

http://www.mek.iif.hu/porta/szint/termesz/matemat/matvers/

In Hungarian.

Solution: Write a, b, c, and d for the vectors
−→
PA,

−→
PB,

−→
PC, and

−→
PD. The area of the triangle

△ABP is half the length of the vector a×b; the areas of the other triangles can be written similarly.
That is, the equality of the areas of all for triangles is described by the equation

(1) a× b = b× c = c× d = d× a 6= 0.

As for the last inequality, if it were not true the areas of all the triangles would be 0. Then the
rectangle �ABCD would have area 0, so it would degenerate to a line; so all the points A, B, C,
D would be on the same line, since �ABCD is convex, and P could not be an internal point).

This means that
0 = a× b− b× c = a× b+ c× b = (a+ c)× b.

that is,

(2) (a+ c)× b = 0.

Similarly,

(a+ c)× d = 0(3)

(3) implies that a+ c ‖ b, and (3) implies that a+ c ‖ d.
There are two possibilities here: 1) a + c = 0, in which case P is the midpoint of the diagonal

AC, and then the assertion of the problem is established; 2) a+ c 6= 0, in which case b ‖ d. Since
b 6= 0 according to the inequality in (1), this means that d = λb for some real number λ. Hence,
by (1), we have

a× b = −a× d = −a× (λb) = −λ(a× b).

Since the vector products here are not zero in view of the inequality in (1), this means that λ = −1.
Hence d = −b, which means that P is the midpoint of the diagonal BD, completing the proof.

Remark. If, say, P is the midpoint of the diagonal AC, then draw two lines b and d parallel to
AC at equal distance from this line in the two half planes determined by the line. If B then placed
on the line b and D is placed on the line d, then the four triangles described in the problem will all
have the same area. To satisfy all assumptions of the problem, the points B and D need to be so
placed that the quadrilateral �ABCD be convex.
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9) (SENIOR 5) Given a finite commutative group with an odd number of elements, show that
the product of all the elements of the group is the identity element.

Source: Problem 3, University of Hyderabad, M.Sc. In Mathematics (Applied Maths) Entrance
Exam - Download Previous Years Question Papers, Paper 1, Entrance Examination, 2004, M.Sc.
(Mathematics/Applied Mathematics), p. 8.

http://entrance-exam.net/forum/question-papers/university-hyderabad-m-sc

-mathematics-applied-maths-entrance-exam-download-previous-years-question

-papers-73542.html

Solution: Calling the group G, we will show that the only element a of G such that a−1 = a is
its identity element e. Indeed, let a such an element. Then, denoting by n the number of elements
of G and forming the product of all its elements, we have

∏

g∈G

g =
∏

g∈G

(ag) = an
∏

g∈G

g = a
∏

g∈G

g;

the first equation holds since when g runs over all elements of G, the products (ag) also run over
all elements of G. The last equation holds since n is odd and a = a−1, and so a2 = e (the identity
element). Multiplying this equation with the inverse of

∏

g∈G g and comparing the sides, it follows
that indeed a = e, as we claimed.

Now, let G′ ⊂ G be a subset of G such that if g ∈ G′ then g−1 /∈ G′, and let G′ be a maximal
set with this property. Then

G = G′ ∪ {g−1 : g ∈ G′} ∪ {e}.

Hence,
∏

g∈G

g = e
∏

g∈G′

(gg−1) = e,

as we wanted to show.

10) (SENIOR 6) Let an be real numbers for n ≥ 1. Assume that
∑∞

n=1 an is convergent but not
absolutely convergent. Show that then

∑∞

n=1 n
2an is divergent.

Source: University of Pennsylvania Mathematics Graduate Preliminary Exam, Fall 2021, Prob-
lem 9, p. 19. See

https://www.math.upenn.edu/graduate/program-description/prelim-exam

Solution: We will show that under the assumption
∑∞

n=1 n
αan is divergent for any α > 1.

Indeed, assume, on the contrary, that the latter series is convergent for some α > 1. Then nαan → 0
as n → ∞; hence, for large enough n, we have |nαan| ≤ 1, and so |an| ≤ n−α. Since

∞
∑

n=1

n−α

is convergent,
∑∞

n=1 |an| is also convergent, contrary to the assumption, completing the proof.

Note: The original formulation of the problem said the following.
Let {an} be a sequence of real numbers. For each of the following, give either a proof or a

counter example:
(a) If

∑∞

n=1 an is convergent but not absolutely convergent, then
∑∞

n=1 nan is divergent.
(b) If

∑∞

n=1 an is convergent but not absolutely convergent, then
∑∞

n=1 n
2an is divergent.
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As we showed above, statement (b) is true. On the other hand, statement (a) is false, as shown
by the example1

an =
(−1)n+1

n log(n+ 1)
,

since
∞
∑

n=1

1

n log(n+ 1)

is divergent, as can easily be shown by the integral test, since

∫ ∞

2

dx

x log x
= lim

A→∞

∫ A

2

dx

x log x
= lim

A→∞

∫ logA

log 2

dt

t
= ∞,

where the second equation uses the substitution t = log x, when dt = dx/ log x. On the other hand,

∞
∑

n=1

(−1)n+1

n log(n+ 1)

is (conditionally) convergent by the alternating series test.

11) (SENIOR 7) Let f be a differentiable function on the real line. Assume that there is no x
such that f(x) = f ′(x) = 0. Show that the set

S = {x ∈ [0, 1] : f(x) = 0}.

is finite.
Source: Problem 4, Ph.D. Preliminary Examination (Analysis), University of Pittsburgh, Au-

gust 2008. See
https://www.mathematics.pitt.edu/graduate/graduate-handbook/sample

-preliminary-exams

Solution: Assume, on the contrary, that the set S is infinite. Then there is an infinite sequence
of pairwise distinct elements xn of S (1 ≤ n < ∞) that is convergent; write x0 = limn→∞ xn. We
may further assume that xn 6= x0 for any n ≥ 1 (by removing, if necessary, the single element from
this sequence for which xn = x0). Given that f is differentiable, f is continuous, hence f(x0) = 0;
this is because f(xn) = 0, since xn ∈ S. Now, the derivative of f at x0 is

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

= lim
x→x0

f(x)

x− x0

;

thus the limit on the right-hand side exists. This limit cannot be anything other than 0, since
xn → x0, xn 6= x0 for any n ≥ 1, and f(xn) = 0. Thus f(x0) = f ′(x0) = 0, contradicting our
assumptions.

1Here log x stands for the natural logarithm for x. In mathematics, the notation lnx is almost never used, and

it is common to use log x to denote the natural logarithm of x. Other sciences often use lnx to denote the natural

logarithm of x.
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