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The source for each problem is listed below when available; but even when the source is given,
the formulation of the problem may have been changed. Solutions for the problems presented here
were obtained without consulting sources for these solutions even when available, and additional
information on how to solve these problems might be obtained by consulting the original sources.
There was some overlap between the problems on the Junior and Senior prize exams; the problems
common to both exams are listed only once.

1) (JUNIOR 1 and SENIOR 1) Let α, β, and γ be such that α+ β + γ = π. Prove that

sinα+ sinβ − sin γ

sinα+ sinβ + sin γ
= tan

α

2
tan

β

2
.

Source: Problem 880, p. 110, Középiskolai Matematikai Lapok, No. 4, Vol. V, December 1897.
http://db.komal.hu/scan/1897/12/89712067.g4.png

Solution: We have

sin γ = sin(π − α− β) = sin(α+ β) = sinα cosβ + cosα sinβ.

Hence,

sinα+ sinβ − sin γ

sinα+ sinβ + sin γ
=

sinα(1− cosβ) + sinβ(1− cosα)

sinα(1 + cosβ) + sinβ(1 + cosα)

=

1−cos β
sin β + 1−cosα

sinα

1+cos β
sin β + 1+cosα

sinα

;

the second equation was obtained by dividing the numerator and the denominator by sinα sinβ.
Using the tangent half-angle formulas (see Note below)

tan
θ

2
=

sin θ

1 + cos θ
=

1− cos θ

sin θ
,

the right-hand side above becomes

tan(β/2) + tan(α/2)
1

tan(β/2) +
1

tan(α/2)

=

(

tan(β/2) + tan(α/2)
)

tan(α/2) tan(β/2)

tan(α/2) + tan(β/2)
= tan

α

2
tan

β

2
;

the first equation follows by multiplying the numerator and the denominator by tan(α/2) tan(β/2).
This completes the proof of the equation in the problem.

Note. The tangent half-angle formulas.

All computer processing for this manuscript was done under Debian Linux. The Perl programming language was

instrumental in collating the problems. AMS-TEX was used for typesetting.
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Writing η = θ/2, we have

tan
θ

2
= tan η =

sin η

cos η
=

2 sin η cos η

2 cos2 η
=

sin 2η

1 + cos 2η
=

sin θ

1 + cos θ

=
(1− cos θ) sin θ

(1− cos θ)(1 + cos θ)
=

(1− cos θ) sin θ

(1− cos2 θ)
=

(1− cos θ) sin θ

sin2 θ

=
1− cos θ

sin θ
;

here the fourth equation uses the double-angle formulas for sine and cosine. This establishes the
tangent half-angle formulas above.

2) (JUNIOR 2 and SENIOR 2) What is the remainder if 1882 is divided by 11?
Solution: According to Fermat’s theorem, if p is a prime and a ∤ p for an integer a, then

ap−1 ≡ 1 mod p. Hence, 1810 ≡ 1 mod 11. So, (1810)8 = 1880 ≡ 1 mod 11. Hence,

1881 = 1880 · 18 ≡ 1 · 7 ≡ 7 mod 11,

and
1882 = 1881 · 18 ≡ 7 · 7 ≡ 49 ≡ 5 mod 11.

3) (JUNIOR 3 and SENIOR 3) Determine a and b in the equation

x3 + ax2 + bx+ 6 = 0

such that one of its roots be 2, and another be 3.
Source: Problem 1418, p. 3, Középiskolai Matematikai Lapok, No. 2, Vol. XIII, October 1905.

http://db.komal.hu/scan/1905/10/90510031.g4.png

Solution: If the third root is x3, then the left-hand side of the equation equals

(x− 2)(x− 3)(x− x3),

that is, the constant term of the equation is (−2)(−3)x3 = 6x3. Since the constant term is given
as 6. we have x3 = 1; so the left-hand side of the equation is

(x− 2)(x− 3)(x− x3) = x3 − 4x2 + x+ 6,

That is, a = −4 and b = 1.

4) (JUNIOR 4) Determine the value of p in the equation x2 − px+ 36 = 0 such that we have

1

x1
+

1

x2
=

5

12

holds for the roots x1 and x2 of the equation.
Source: Problem 1355, Középiskolai Matematikai Lapok, No. 6, Vol. XXI, January 1914.

http://db.komal.hu/scan/1914/01/91401120.g4.png

Solution: The roots of the equation

x−2 − px−1 + 36 = 0
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are 1/x1 and 1/x2. Multiplying this equation by x2/36, we obtain the equivalent equation

x2 − p

36
x+

1

36
= 0.

The sum of the roots of this equation is p; that is

1

x1
+

1

x2
=

p

36
.

Hence, we need to choose p = 36 · 5/12 = 15.

5) (JUNIOR 5) Let a, b. amd c be real numbers such that a2 + b2 + c2 = 1. Show that

−1

2
≤ ab+ bc+ ca ≤ 1.

Source: problem 1 17th Eötvos Competition, Hungary, 1910. See
https://imomath.com/index.cgi?page=collectionHun

Solution: We have

0 ≤ (a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2bc+ 2ca = 1 + 2ab+ 2bc+ 2ca.

Rearranging this, we obtain the first inequality in the question.
Further, we have

0 ≤ (a− b)2 + (b− c)2 + (c− a)2 = 2(a2 + b2 + c2 − ab− bc− ca) = 2(1− ab− bc− ca).

Rearranging this, we obtain the second inequality in the question.

6) (JUNIOR 6) Show that every positive integer that is not divisible by 10 has a multiple that
begins and ends with the same digit when written in the decimal system (without starting zeros).

Source: 53rd László Kalmár Mathematics competition for 8th grade students, second day,
national final, 2023-2024, Problem 2. See

https://www.kalmarverseny.hu/2024/07/13/kalmar-laszlo-matematikaverseny-

feladatgyujtemeny-2013-2024/

Solution: Let n be the number in question, and let k be a positive integer that n < 10k. Let
the last digit of n be l. Let m be such that

10k+2l ≤ mn < (10k+2 − 10k.

Then, it is easy to see that the first and last digits of (10m+ 1)m are both l.

7) (JUNIOR 7) How many ways can you arrange the numbers 0, 1, 2, 3, 4, 5, and 6, in a sequence
such that the sum of any four consecutive ones among them is divisible by 3.

Based on Problem 1, Dániel Arany Mathematics Competition, academic year 2012/2013, Begin-
ners Category II, round 3 (final). See p. 12,

https://matek.fazekas.hu/index.php?option=com_content&view= article&id=57:arany

-daniel-matematikaverseny&catid=26&Itemid=185
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Solution: Let a1a2a3a4a5a6a7 be an arrangement of the above numbers in a sequence satisfying
the conditions. Since

a1 + a2 + a3 + a4 and a2 + a3 + a4 + a5

are both divisible by 3, we must have

a1 ≡ a5 mod 3.

Similarly, since
a2 + a3 + a4 + a5 and a3 + a4 + a5 + a6

are both divisible by 3, we must have

a2 ≡ a6 mod 3.

A similar argument also gives that
a3 ≡ a7 mod 3.

Hence, we cannot have
a4 ≡ 1 mod 3

or
a4 ≡ 2 mod 3,

since there are only two among that the given numbers that are congruent to 1 mod 3, and,
similarly, there are only two among that the given numbers that are congruent to 2 mod 3. Hence,
we must have

a4 ≡ 0 mod 3.

Thus, considering only how many ways the residue classes can be arranged, the first three may be
0, 1, 2 in any order, the last three must follow the same arrangement, and the fourth can only be
0. This gives 3! = 6 arrangements. The three occurrences of the residue class 0 must be replaced
by one of each of the numbers 0, 3, and 6; this can be done in 3! = 6 ways. The two occurrences of
the residue class 1 must be replaced by one of each of the numbers 1 and 4. This can be done in
two ways. Similarly, the two occurrences of the residue class 2 must be replaced by one of each of
the numbers 2 and 5. This can be done in two ways. That is, altogether, there are 6 · 6 · 2 · 2 = 144
arrangements.

8) (SENIOR 4) Assume all but one edges of a tetrahedron have length ≤ 1 (no restriction is
placed on the length of the remaining one edge). Prove that the volume of the tetrahedron is ≤ 1/8.

Source: Ninth International Olympiad, 1967, Problem 1967/3. See
http://www.imo-official.org/year_info.aspx?year=1967

Solution: Call the vertices of the tetrahedron A, B, C, and D, and assume all edges except BC
have length ≤ 1, while no restriction is placed on the length of the edge BC. Set up a coordinate
system with the origin at D such that A is on the x-axis, B is in the xy-plane, and all coordinates
of these points are nonnegative. That is, the coordinates of the points are A(x, 0, 0), B(b1, y, 0),
and C(c1, c2, z) for some nonnegative x, y, z, b1, c1, and c2. The volume of the tetrahedron can be
expressed with a determinant:

V =
1

6

∣

∣

∣

∣

∣

∣

x 0 0
b1 y 0
c1 c2 z

∣

∣

∣

∣

∣

∣

=
1

6
xyz.
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That is, we may move around the point B by changing only its first coordinate, and the point C
by changing only its first or second coordinates, while making sure that the lengths of the edges
AB, DB, AC, and DC will not exceed 1; in this way, we can change the first coordinates of B and
C to x/2. Indeed, when doing so, the new lengths of BA and BD will not exceed the old length of
the larger of BA and BD. Similarly, the new lengths of AC and CD will not exceed the old length
of the larger of AC and CD.

So, from now on assume that the coordinates of the points are

A(x, 0, 0), B(x/2, y, 0), C(x/2, c2, z), and D(0, 0, 0).

The coordinates x, y, z, and c2 need to satisfy the following inequalities:

x ≤ 1,
(x

2

)2

+ y2 ≤ 1,

(x

2

)2

+ c22 + z2 ≤ 1.

The first of these inequalities says that DA ≤ 1, the second one, that DB = BA ≤ 1, and the third
one, that DC = CA ≤ 1. We weaken the third inequality to

(x

2

)2

+ z2 ≤ 1

Thus

y, z ≤
√

1− x2

4
.

Hence, for the volume V of the tetrahedron, we have

V =
1

6
xyz ≤ 1

6
x

(

1− x2

4

)

=
1

6

(

x− x3

4

)

.

Write f(x) for the right-hand side. We have f ′(x) = (1/6)(1− 3x2/4). Therefore, f ′(x) > 0 when
0 ≤ x ≤ 1, showing that f is increasing on [0, 1]. So,

V ≤ f(1) =
1

6
· 3
4
=

1

8
,

which is what we wanted to prove.

9) (SENIOR 5) Let ABC be a triangle such that the coordinates of its vertices are integers, and
its area is a positive integer (taking the area of the unit square of the coordinate system to be 1),
Show that the midpoint of one of the sides of the triangle has integer coordinates.

Source: 53rd László Kalmár Mathematics competition for 8th grade students, second day,
national final, 2023-2024, Problem 3. See

https://www.kalmarverseny.hu/2024/07/13/kalmar-laszlo-matematikaverseny-

feladatgyujtemeny-2013-2024/

Solution: Without loss of generality, we may assume that A is the origin of the coordinate
system, and the points B and C lie in the right half plane. Writing B(k, l) and C(m,n) for the

5



coordinates of the vertices B and C, the latter assumption means that k,m ≥ 0. We may also
assume that m ≤ k. Let I1, I2, and I3 denote the area between the sides AB, AC, and CB and the
x-axis, respectively, with areas under the x-axis counting as negative (the same way as in integrals).
These areas are easy to calculate either by integration or by direct geometric considerations. We
have

I1 =
kl

2
, I2 =

mn

2
, and I3 =

(k −m)(l + n)

2
.

For example, to calculate I3, one can use the formula for the area of the trapezoid, or one can use
integration:

I3 =

∫ k

m

(

l − n

k − n
(x−m) + n

)

dx =
(k −m)(l − n)

2
+ (k −m)n =

(k −m)(l + n)

2
.

The area of the triangle is1

|I1 − I2 − I3| =
1

2
|kl −mn− (k −m)(l + n)|

In order for this to be an integer, either all of the numbers kl, mn, and (k − m)(l + n) must be
even, or two of them must be odd and one even; in other words, either all three integrals (areas)
must be integers. or two of them must be nonintegers, and the third one, an integer.

In order for the coordinates of the midpoint of one of the sides be integers, there must be a pair
among k, l, or m,n, or k −m, l +m such that both members of the pair are even. Assume this is
not the case, that is, each pair contains at least one odd member. We will show that in this case,
the area of the triangle cannot be an integer.

First note, that the three pairs have equal roles in the sense that if the first members of two
pairs are odd, then the first member of the third pair is even. If one of them is odd, the other is
even, then the third one is odd. If two of them are even, then the third one is also even. Similarly
for the second members.

Assume first that all three areas I1, I2, and I3 are integers, In this case each pair contains an
even integer; for two pairs, these even integers must be the same member. For example, if k and
m are even, then l and n must be odd; but then k −m and l +m are both even, so the midpoint
of CB has integer coordinates. A similar argument applies in the other cases.

Now assume that the first two areas are not integers. Then k, l, m, and n are odd; but then
again k − m and l + m are both even, so the midpoint of CB has integer coordinates. A similar
argument applies in the other cases.

This establishes the assertion that the midpoint of one of the sides has integer coordinates.

10) (SENIOR 6) Show that the integral

∫

√
π

0

cosx2 dx

is positive.

1The expression in the next line can be simplified as |kn−ml|/2. This can also be obtained from the determinant

form of the area of a triangle. In any case, the form of the area we wrote in the next line is more suitable for the

argument that follows.
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Source: Based on Problem 2. 2018 Siberian mathematical contest, Second-or-more year stu-
dents. See

https://drive.google.com/file/d/1IRjKq06xLcjrk2s2_uPhvBqbPrdAZoGc/view

Solution: We will use the substitution t = x2, dt = 2x dx, i.e., dx = dt/(2
√
t). This substitution

introduces a singularity at x = 0, so we are technically dealing with improper integrals; for this
reason, we introduce limit at 0. Using t ց 0 to indicate that t tends to zero from the right (the
downward arrow suggests that t needs to decrease to reach 0), we have

∫

√
π

0

cosx2 dx = lim
ǫց0

∫

√
π

ǫ

cosx2 dx = lim
ǫց0

∫ π

ǫ2

cos t

2
√
t
dt =

∫ π

0

cos t

2
√
t
dt

=

∫ π/2

0

cos t

2
√
t
dt+

∫ π

π/2

cos t

2
√
t
dt >

∫ π/2

0

cos t

2
√
t
dt+

∫ π

π/2

cos t

2
√

π/2
dt;

the inequality holds since the numerator in the second integral after the fourth equation is negative,
and we replaced the denominator with its smallest value in the interval of integration. In the second
integral on the right-hand side, we make the substitution u = π − t, du = −dt. So, the right-hand
side equals

∫ π/2

0

cos t

2
√
t
dt−

∫ 0

π/2

cos(π − u)

2
√

π/2
du =

∫ π/2

0

cos t

2
√
t
dt−

∫ π/2

0

cosu

2
√

π/2
du

=

∫ π/2

0

cos t

(

1

2
√
t
− 1

2
√

π/2

)

dt > 0;

in the first equation, we interchanged the limits of the second integral and used the equality cos t =
− cos(π− t). The inequality on the right holds because the integrand is positive inside the interval
of integration. This proves the assertion that the integral in question is indeed positive.

11) (SENIOR 7) Let f be a real-valued function of two real variables such that all second order
partial derivatives of f exist and are continuous everywhere. Assume that f(x, y) = 0 whenever
xy = 0. Show that there is a constant C > 0 such that

|f(x, y)| ≤ C|x||y| whenever |x|, |y| ≤ 1.

Source: Stanford University Ph.D. Qualifying Exam in Real Analysis (Mathematics) Problem
1, part I, Fall 2024. See

https://mathematics.stanford.edu/academics/graduate-students/phd-program/

phd-qualifying-exams

Solution: Let C be a bound for the absolute values of the first and second partial derivatives of
f for x and y with |x|, |y| < 1. Note that we have fx(x, 0) = 0 for every x for the partial derivative
fx, since f(x, 0) = 0 for all x according to the assumptions. Using the Mean-Value Theorem of
Differentiation, for x and y with |x|, |y| < 1, there is an η between 0 and y such that we have

|fx(x, y)| = |fx(x, y)− fx(x, 0)| = |yfxy(x, η) ≤ |y|C.
Hence, using the Mean-Value Theorem of Differentiation again, there is a ξ between 0 and x such
that

|f(x, y)| = |f(x, y)− f(x, 0)| = |xfx(ξ, y) ≤ |x||y|C,
where the inequality holds according to the previous displayed inequality with fx(ξ, y) replacing
fx(x, y). This completes the proof.
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