Topics List for Exam 1

* Material from 3110
o Classes:
= Accessors and mutators (aka getters and setters
= Private / public
= What the =operator and copy constructors do by default and why
this causes a problem with classes that have pointers in them.
= Know how to implement constructors using member initialization
lists.
= Know when you would need a destructor.
= What pass by value, pass by reference, and pass by const reference
do, and why you would use/not use each one.
= QOperator overloading
¢ Know how to overload the Boolean operators (==, !=, >, <,
>=, <=)
* Know how to implement the [] operator
* Know how to implement the << operator
* Know how to implement the + operator
o Recursion
= How to write a simple recursive algorithm
= How to trace through a recursive algorithm
* Vectors
o STL vectors
= How to create a vector with an initial size
= How to create an empty vector
= How to initialize a vector using an array. (You’ll need to recognize
this, but you won’t need to write it)
= What the operations push_back(), pop_back(), back(), size(),
empty(), and the [] operator do.
= How to write functions that go through a vector, performing some
operation (e.g. printing out a whole vector, summing up a vector,
whatever).
o Our own implementation
= How did we implement a vector? (You don’t have to implement
one from scratch on the test, but you should know what we did)
= What is the running time of push_back(), pop_back(), back(),
size(), empty(), and the [] operator?
* Lists
o STL lists
= How to create a list with an initial size.
= How to create an empty list.
= How to initialize a list using an array. (You’ll need to just
recognize this.)

= What the operations push_back(), pop_back(), back(), size(),
empty(), push_front(), and pop_front() do.
= How to write functions that go through an entire list using iterators,
performing some operation.
o Our Own list implementation
* How did we implement a list?
= Know how to write code to add/remove an element from the
head/tail of a linked list structure.
= What is the running time of push_back(), pop_back(), back(),
size(), empty(), push_front(), and pop_front() using a linked list
implementation.
* Analysis of Algorithms
o Know the definitions for the following:
* Running time (or time complexity)
= Space complexity
= Algorithm
= Correctness of an algorithm
o Know how to analyze the running time of a simple algorithm and explain
why that is the correct running time.
o Know how linear search and binary search work and which is better in which
situations
* Stacks
o Know how to create an empty stack
o Know what push(), pop(), empty(), and size() do.
o Be able to solve a problem using a stack.

