
Topics List for Exam 1

• Material from 3110
o Classes:

§ Accessors and mutators (aka getters and setters
§ Private / public
§ What the =operator and copy constructors do by default and why

this causes a problem with classes that have pointers in them.
§ Know how to implement constructors using member initialization

lists.
§ Know when you would need a destructor.
§ What pass by value, pass by reference, and pass by const reference

do, and why you would use/not use each one.
§ Operator overloading

• Know how to overload the Boolean operators (==, !=, >, <,
>=, <=)

• Know how to implement the [] operator
• Know how to implement the << operator
• Know how to implement the + operator

o Recursion
§ How to write a simple recursive algorithm
§ How to trace through a recursive algorithm

• Vectors
o STL vectors

§ How to create a vector with an initial size
§ How to create an empty vector
§ How to initialize a vector using an array. (You’ll need to recognize

this, but you won’t need to write it)
§ What the operations push_back(), pop_back(), back(), size(),

empty(), and the [] operator do.
§ How to write functions that go through a vector, performing some

operation (e.g. printing out a whole vector, summing up a vector,
whatever).

o Our own implementation
§ How did we implement a vector? (You don’t have to implement

one from scratch on the test, but you should know what we did)
§ What is the running time of push_back(), pop_back(), back(),

size(), empty(), and the [] operator?
• Lists

o STL lists
§ How to create a list with an initial size.
§ How to create an empty list.
§ How to initialize a list using an array. (You’ll need to just

recognize this.)

§ What the operations push_back(), pop_back(), back(), size(),
empty(), push_front(), and pop_front() do.

§ How to write functions that go through an entire list using iterators,
performing some operation.

o Our Own list implementation
§ How did we implement a list?
§ Know how to write code to add/remove an element from the

head/tail of a linked list structure.
§ What is the running time of push_back(), pop_back(), back(),

size(), empty(), push_front(), and pop_front() using a linked list
implementation.

• Analysis of Algorithms
o Know the definitions for the following:

§ Running time (or time complexity)
§ Space complexity
§ Algorithm
§ Correctness of an algorithm

o Know how to analyze the running time of a simple algorithm and explain
why that is the correct running time.

o Know how linear search and binary search work and which is better in which
situations

• Stacks
o Know how to create an empty stack
o Know what push(), pop(), empty(), and size() do.
o Be able to solve a problem using a stack.

