Topics List for Exam 2

* Queues

* Know how we implemented our own queue.
* Know how we specified our own Queue interface.
* know what add(), poll(), peek(), isEmpty(), and size() do.

Priority Queues
* Know how to create an empty PriorityQueue.
* How to create a PriorityQueue using a custom Comparator.
* How to implement a class that implements the Comparator<E> interface.
* Know what add(), poll(), peek(), size() and isEmpty() do, and be able to use them to
write a method.
* Be able to solve a problem using a priority queue.
* Our own implementation:
*To be able to identify whether or not an array represents a legal binary min heap.
*Understand the implementation we used (binary min heap.)
* Be able to run the insertElement() and removeMin() operations on a heap.
* Know the running times for all of the priority queue methods.

- Sorting

« Sets

* Know how to run the O(n?) time sorting algorithms that we spoke about.
* bubble sort
* Insertion sort
* Know how to run the subroutines of the O(n log n) time sorting algorithms
* Merge sort (you have to know how to run merge())
* Quicksort (you have to know how to run partition())

* Know how to run the full merge sort and quicksort algorithms.

* Know the running times for all of the sorting algorithms discussed in class.

* Know the best and worst cases (and best and worst case times) for each sorting
algorithm.

* Know how to create a TreeSet and HashSet.

* Know that the iterator for TreeSet gives you back the elements in a sorted order.

* Know what the operations add(), contains(), and remove() do, and be able to use them
to write a method to solve a problem.

* Know how to iterate through a set using both an exposed iterator (similar to Lists) and
the for-each loop.

* To know which mathematical set operations correspond to removeAll(), addAll(),
retainAll(), and what these operations do.



*Know how to solve a problem with a set (e.g.

e Maps
* Know how to create a TreeMap and HashMap.
* Know how to iterate through a map (using keySet() combined with get(); and
entrySet())
* Know how to use get() and put() and containsKey().
* Know how to solve a problem with a map (e.g. counting occurrences)

* Binary Search Trees
» Understand why binary search trees are useful in implementing sets and maps
* Know how to write a method that searches a BST for a particular element.
* Know how to write a method that inserts an element into a BST
* Know how to write preorder/inorder/postorder traversals
* Know how to traverse a BST to solve a particular problem (e.g. summing all numbers
in a BST).



