
Topics List for Exam 2

• Queues
• Know how we implemented our own queue.
• Know how we specified our own Queue interface.
• know what add(), poll(), peek(), isEmpty(), and size() do.

• Priority Queues
• Know how to create an empty PriorityQueue.
• How to create a PriorityQueue using a custom Comparator.
• How to implement a class that implements the Comparator<E> interface.
• Know what add(), poll(), peek(), size() and isEmpty() do, and be able to use them to
write a method.
• Be able to solve a problem using a priority queue.
• Our own implementation:

•To be able to identify whether or not an array represents a legal binary min heap.
•Understand the implementation we used (binary min heap.)
• Be able to run the insertElement() and removeMin() operations on a heap.
• Know the running times for all of the priority queue methods.

• Sorting
• Know how to run the O(n2) time sorting algorithms that we spoke about.

• bubble sort
• Insertion sort

• Know how to run the subroutines of the O(n log n) time sorting algorithms
• Merge sort (you have to know how to run merge())
• Quicksort (you have to know how to run partition())

• Know how to run the full merge sort and quicksort algorithms.
• Know the running times for all of the sorting algorithms discussed in class.
• Know the best and worst cases (and best and worst case times) for each sorting
algorithm.

• Sets
• Know how to create a TreeSet and HashSet.
• Know that the iterator for TreeSet gives you back the elements in a sorted order.
• Know what the operations add(), contains(), and remove() do, and be able to use them
to write a method to solve a problem.
• Know how to iterate through a set using both an exposed iterator (similar to Lists) and
the for-each loop.
• To know which mathematical set operations correspond to removeAll(), addAll(),
retainAll(), and what these operations do.

•Know how to solve a problem with a set (e.g.

• Maps
• Know how to create a TreeMap and HashMap.
• Know how to iterate through a map (using keySet() combined with get(); and
entrySet())

• Know how to use get() and put() and containsKey().
• Know how to solve a problem with a map (e.g. counting occurrences)

• Binary Search Trees
• Understand why binary search trees are useful in implementing sets and maps
• Know how to write a method that searches a BST for a particular element.
• Know how to write a method that inserts an element into a BST
• Know how to write preorder/inorder/postorder traversals
• Know how to traverse a BST to solve a particular problem (e.g. summing all numbers
in a BST).

