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1 Basic Set Operations

1.1 Union

Definition: The union of 2 sets A and B, denoted AU B, is a new set that contains all elements
that are in A or B (or both). i.e. AUB = {z:z € Aorx € B}.

1.2 Intersection

Definition: The intersection of 2 sets A and B, denoted A N B, is a new set that contains all
elements that are in A and B. i.e. ANB = {z: z € Aandx € B}.
Definition: A and B are said to be disjoint if AN B = {.

1.3 Examples

1. Example: Let A = {n € N: n < 11},B = {n : nnisevenand n < 20},E = {n :
n is even}.

Find AUB,AUE, AN B.

2. Example: Let ¥ = {a,b},A = {\ a,aa,aaa}, B = {\,b,bb,bbb} and C = {w € ¥* :
length(w)=2}.
Find All

1.4 Relative Complement

Definition: The relative complement of one set A and another set B, denoted A\B is a new set
that contains the elements that are in A but not in B. i.e. AAB ={z: 2 € Aand z ¢ B}. You
can think of this operation as "minus."

1.5 Symmetric Difference

Definition: The symmetric difference of 2 sets A and B, denoted A B, is a new set that contains
all elements in A or B but not both.

Theorem 1 (alternative definition of symmetric difference). A @ B = (AU B)\(A N B).

1.6 Examples
1. Use 1) from above:
Find:
(a) E\B
(b) A\B



(c) Ae B
2. Use 2) from above: Find

(a) A\B
(b) A\Z

2 Venn Diagrams

TODO: Draw some on the board

2.1 Absolute Complement

Usually, when we talk about sets, we consider (often implicitly) a universal set, U. This may be R
or N or a set of vectors, etc.

Based on this understanding, we can define the (absolute) complement of a set.

Definition: The absolute complement of a set A, denoted as A° or A is the set of things under

consideration that are not in A. i.e. A={z:2 €U and = ¢ A}.

Theorem 2 (Alternative Definition of Relative Complement). A\B = AN B°.

2.2 Examples
1. Let U = N and look a example 1) Find:

(a) A°
(b) E°

2. Let U = R. Find [0, 1]°.

3 Some Laws of Sets (We will prove some of these eventually)

e AUB=BUA AnNB=BnNA Commutative

AU(BUC)=(AUB)UC ANn(BNC)=(AnB)NC Associative

AUu(BNC)=(AUB)N(AUC) AnN(BUC)=(ANB)U(ANC). Distributive law

e AUA= AN A= A Idempotent (meaning, unchanged laws

AubD=A AnNnO=0 AuU=U ANU = A. Identity Laws

(A=A AUA°=U An A° = (. double complementation
e (AUB)*=A°NB* (ANB)°= A°U B°. De Morgan’s laws

4 Some proofs
Theorem 3 (De Morgan’s law). (AN B)¢ = A°U B¢

Proof. Proof =: Suppose z € (AN B)°. Then, x ¢ (AN B). Therefore, x ¢ A or x ¢ B. (Since if
x were in the intersection, it would be in both A and B). Consequently, x € A€ or € B¢. Hence,
x € (A°U B°). This shows that (AN B)¢ C A°U B°.

Proof <: Suppose x € (A°U B¢). Soz € A°or x € B°. Sox ¢ A or z ¢ B. Therefore,

x ¢ (AN B). (Because if it were, then it would have to be in A and B). Hence,z € (AN B)¢. This
shows that A°U B¢ C (AN B)°.

O

Theorem 4 (distributive law). AU(BNC)=(AUB)N(AUC).



Proof. Proof =: Suppose x € AU(BNC). Sothenz € Aorz € (BNC).Sox € Aor z € B and
zeC.

Suppose € A. Then z € (AU B) and x € (AUC). Thenx € (AUB)N(AUC). If = ¢ A.
Then x € Band 2 € C. Then z € (AUB) and z € (AUC). Then z € (AUB)N(AUC).

Proof «: Suppose z € (AUB)N (AUC)).Sozx € (AUB) and z € (AUC). So So (z € A or

x € B)and (r € Aorz € C). Suppose © € A. Then x € (AU (BNC)). If x ¢ A, then z € B and
zeC,soxe (BNC),and z € (AU (BNCQC)).

O

5 Cartesian Product

Definition: Consider two sets S and T. The Cartesian product of S and T, denoted S x T  is a set
of ordered pairs. In each ordered pair, the first component is from S, and the second component
isfromT. ie. SxT ={(s,t):s€ SandteT}
Example: A = {17 2, 3}7 B = {47 9, 6} Then AxB = {(1» 4)7 (13 5)7 (17 6)a (2, 4)7 (Qa 5), (27 6)a (3a 4)7 (Sa 5)7 (37 6)}

Definition: Sometimes S x S is denoted S2.

Definition: Suppose we have a collection of sets 57,52, 53, -S,. Then S; x So x S3---x S, =
{(517523537’ : Sn) HEFIS Sz for i € {1a2737 T ,Tl}}
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