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1 Basic Set Operations

1.1 Union
Definition: The union of 2 sets A and B, denoted A ∪B, is a new set that contains all elements
that are in A or B (or both). i.e. A ∪B = {x : x ∈ Aorx ∈ B}.

1.2 Intersection
Definition: The intersection of 2 sets A and B, denoted A ∩ B, is a new set that contains all
elements that are in A and B. i.e. A ∩B = {x : x ∈ Aandx ∈ B}.

Definition: A and B are said to be disjoint if A ∩B = ∅.

1.3 Examples
1. Example: Let A = {n ∈ N : n ≤ 11}, B = {n : nn is even and n ≤ 20}, E = {n :

n is even}.
Find A ∪B,A ∪ E,A ∩B.

2. Example: Let Σ = {a, b}, A = {λ, a, aa, aaa}, B = {λ, b, bb, bbb} and C = {w ∈ Σ∗ :
length(w)=2}.
Find All.

1.4 Relative Complement
Definition: The relative complement of one set A and another set B, denoted A\B is a new set
that contains the elements that are in A but not in B. i.e. A\B = {x : x ∈ A and x /∈ B}. You
can think of this operation as "minus."

1.5 Symmetric Difference
Definition: The symmetric difference of 2 sets A and B, denoted A⊕B, is a new set that contains
all elements in A or B but not both.

Theorem 1 (alternative definition of symmetric difference). A⊕B = (A ∪B)\(A ∩B).

1.6 Examples
1. Use 1) from above:

Find:

(a) E\B
(b) A\B
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(c) A⊕B

2. Use 2) from above: Find

(a) A\B
(b) A\Σ

2 Venn Diagrams
TODO: Draw some on the board

2.1 Absolute Complement
Usually, when we talk about sets, we consider (often implicitly) a universal set, U . This may be R
or N or a set of vectors, etc.

Based on this understanding, we can define the (absolute) complement of a set.
Definition: The absolute complement of a set A, denoted as Ac or A is the set of things under

consideration that are not in A. i.e. A = {x : x ∈ U and x /∈ A}.

Theorem 2 (Alternative Definition of Relative Complement). A\B = A ∩Bc.

2.2 Examples
1. Let U = N and look a example 1) Find:

(a) Ac

(b) Ec

2. Let U = R. Find [0, 1]c.

3 Some Laws of Sets (We will prove some of these eventually)
• A ∪B = B ∪A A ∩B = B ∩A Commutative

• A ∪ (B ∪ C) = (A ∪B) ∪ C A ∩ (B ∩ C) = (A ∩B) ∩ C Associative

• A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C). Distributive law

• A ∪A = A ∩A = A Idempotent (meaning, unchanged laws

• A ∪ ∅ = A A ∩ ∅ = ∅ A ∪ U = U A ∩ U = A. Identity Laws

• (Ac)c = A A ∪Ac = U A ∩Ac = ∅. double complementation

• (A ∪B)c = Ac ∩Bc (A ∩B)c = Ac ∪Bc. De Morgan’s laws

4 Some proofs
Theorem 3 (De Morgan’s law). (A ∩B)c = Ac ∪Bc

Proof. Proof ⇒: Suppose x ∈ (A ∩ B)c. Then, x /∈ (A ∩ B). Therefore, x /∈ A or x /∈ B. (Since if
x were in the intersection, it would be in both A and B). Consequently, x ∈ Ac or x ∈ Bc. Hence,
x ∈ (Ac ∪Bc). This shows that (A ∩B)c ⊆ Ac ∪Bc.

Proof ⇐: Suppose x ∈ (Ac ∪ Bc). So x ∈ Ac or x ∈ Bc. So x /∈ A or x /∈ B. Therefore,
x /∈ (A ∩B). (Because if it were, then it would have to be in A and B). Hence,x ∈ (A ∩B)c. This
shows that Ac ∪Bc ⊆ (A ∩B)c.

Theorem 4 (distributive law). A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
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Proof. Proof ⇒: Suppose x ∈ A∪ (B ∩C). So then x ∈ A or x ∈ (B ∩C). So x ∈ A or x ∈ B and
x ∈ C.

Suppose x ∈ A. Then x ∈ (A ∪ B) and x ∈ (A ∪ C). Then x ∈ (A ∪ B) ∩ (A ∪ C). If x /∈ A.
Then x ∈ B and x ∈ C. Then x ∈ (A ∪B) and x ∈ (A ∪ C). Then x ∈ (A ∪B) ∩ (A ∪ C).

Proof ⇐: Suppose x ∈ ((A ∪B) ∩ (A ∪ C)). So x ∈ (A ∪B) and x ∈ (A ∪ C). So So (x ∈ A or
x ∈ B) and (x ∈ A or x ∈ C). Suppose x ∈ A. Then x ∈ (A ∪ (B ∩ C)). If x /∈ A, then x ∈ B and
x ∈ C, so x ∈ (B ∩ C), and x ∈ (A ∪ (B ∩ C)).

5 Cartesian Product
Definition: Consider two sets S and T . The Cartesian product of S and T , denoted S×T is a set
of ordered pairs. In each ordered pair, the first component is from S, and the second component
is from T . i.e. S × T = {(s, t) : s ∈ S and t ∈ T}.

Example: A = {1, 2, 3}, B = {4, 5, 6}. ThenA×B = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}.

Definition: Sometimes S × S is denoted S2.

Definition: Suppose we have a collection of sets S1, S2, S3, · · ·Sn. Then S1×S2×S3 · · ·×Sn =
{(s1, s2, s3, · · · sn) : si ∈ Si for i ∈ {1, 2, 3, · · · , n}}.
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