Section 1.7 - Properties of Functions

Ari Mermelstein

February 5, 2018

1 Informal Definitions of Terms

Suppose we had 2 sets $S = \{s : s \text{ is a student in this class}\}$ and $D = \{d : d \text{ is a desk in this room}\}$. We define a function $f : S \to D$ such that f(s) = d if student s is assigned to sit in chair d. If no 2 students are assigned the same chair, we say that f is one-to-one. If every chair has at least one student assigned to it, then we say that f is onto (or more verbosely, f maps S onto T). If F is both one-to-one and onto, we say that f is a one-to-one correspondence.

2 Formal definitions

2.1 One-to-One

<u>Definition</u>: Suppose $f: S \to T$. We say that f is one-to-one if each element of S has a unique image in T. Equivalently, if $f(x_1) = f(x_2)$ then $x_1 = x_2 \ \forall x_1.x_2 \in S$.

2.2 Onto

<u>Definition</u>: Suppose $f: S \to T$. We say that f is onto if Im(f) = T. In other words, for every $t \in T$, there is at least one $s \in S$ such that f(s) = t.

2.3 One-to-One Correspondence

<u>Definition</u>: Suppose $f: S \to T$. We say that f is a one-to-one correspondence if f is both one-to-one and onto.

3 Examples

Is the function one-to-one? onto?

- 1. $f : \mathbb{R} \to \mathbb{R}, f(x) = 3x 5.$
- 2. $g: \mathbb{N} \to \mathbb{N}, f(n) = 2n$.
- 3. $length: \Sigma^* \to \mathbb{N}$.
- 4. Suppose S is a set and $A \subseteq S$. $\chi_A : S \to \{0,1\}$.
- 5. $h: \mathbb{R} \to (0, \infty), f(x) = e^x$.
- 6. $j: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}, j(x) = \frac{1}{x}$.

4 Inverse Functions

4.1 Definition

The inverse of a function $f: S \to T$ is a function $f^{-1}: T \to S$ such that $f^{-1}(f(x)) = x \ \forall x \in S$ and $f(f^{-1}(y)) = y \ \forall y \in T$.

4.2 Theorem

Theorem 1 (Function Inverse Theorem). A function f is invertible, (i.e. it has an inverse) if and only if f is a one-to-one correspondence.

4.3 Examples

For the above functions that are one-to-one correspondences, find the inverse.

5 Image and Pre-image

5.1 Image

<u>Definition</u>: Consider a function $f: S \to T$ and $A \subseteq S$. Then the image of A under f, denoted $f(A) = \{f(x) : x \in A\}$.

5.2 Pre-image

<u>Definition</u>: Consider a function $f: S \to T$ and $B \subseteq T$. Then the pre-image of B under f, denoted $f^{\leftarrow}(B) = \{x \in S : f(x) \in B\}$. We can also talk about the pre-image of a particular element $y \in B$. Note: the pre-image of a function is equal to the inverse function only if the original function is a one-to-one correspondence. Otherwise, the pre-image is a set rather than one value.

5.3 Examples

Find the pre-image for the following:

- 1. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$. Find $f((1,2)), f^{\leftarrow}(4), f^{\leftarrow}([1,9])$
- 2. $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, g(m,n) = m^2 + n^2$. Find $f^{\leftarrow}(0), f^{\leftarrow}(3)$.
- 3. $length: \Sigma^* \to \mathbb{N}$. Find the pre-image of 2 if $\Sigma = \{a, b\}$.