Section 13.2 - Predicate Calculus

Ari Mermelstein

April 4, 2018

1 Writing Things in Predicate Notation with Quantifiers

1.1 Examples:

Let C= the set of all cars registered in New York State.

For all $c \in C$, Define r(c) to mean car c is red. Write the following in Predicate calculus.

- 1. All cars are red.
- 2. There are cars that are not red.
- 3. It is not true that all cars are red.
- 4. There are no cars that are red.

1.2 More Examples

Let S= the set of all students in Brooklyn College, and let C= the set of courses offered at Brooklyn College.

For all $c \in C$ and $s \in S$, Define T(s,c) to mean student s is taking course c. Write the following in Predicate calculus.

- 1. There exist some students who take discrete math.
- 2. All students take calculus.
- 3. There are some students who don't take any courses.

2 De Morgan Laws for the Predicate Calculus

- $\neg(\exists x p(x)) \iff \forall x \neg p(x)$
- $\bullet \neg (\forall x p(x)) \iff \exists x \neg p(x)$

3 Examples

Write the following without using \neg at the beginning.

- 1. Not every prime number is odd.
- 2. For $\sqrt{2}$, there do not exist p and q such that $\sqrt{2} = \frac{p}{q}$.
- 3. Not all cars are red.