Section 2.2 - Propositional Calculus

Ari Mermelstein

February 23, 2018

1 Truth Tables

1.1 Definition

<u>Definition</u>: A truth table is a table that lists all possible truth values for all variables in the proposition and shows the truth value of the proposition under those inputs.

2 Definitions for all Primitive Operations

2.1 not

p	¬р		
0	1		
1	0		

2.2 or

p	q	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

2.3 XOR

p	q	$p \oplus q$
0	0	0
0	1	1
1	0	1
1	1	0

2.4 and

p	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

2.5 implies

p	q	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

2.6 bi-conditional

p	q	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

3 Truth tables for compound propositions

3.1 Example 1

Build a truth table for $(p \land q) \lor \neg (p \rightarrow q)$.

p	q	$p \wedge q$	$p \rightarrow q$	$\neg(p \to q)$	$(p \land q) \lor \neg (p \to q)$
0	0	0	1	0	0
0	1	0	1	0	0
1	0	0	0	1	1
1	1	1	1	0	1

3.2 Example 2

Build a truth table for $(p \to q) \land [(q \land \neg r) \to (p \lor r)]$.

p	q	r	$p \rightarrow q$	$\neg r$	$q \wedge \neg r$	$p \lor r$	$ \mid (q \land \neg r) \to (p \lor r) $	$(p \to q) \land [(q \land \neg r) \to (p \lor r)]$	
0	0	0	1	1	0	0	1	1	
0	0	1	1	0	0	1	1	1	
0	1	0	1	1	1	0	0	0	
0	1	1	1	0	0	1	1	1	
1	0	0	0	1	0	1	1	0	
1	0	1	0	0	0	1	1	0	
1	1	0	1	1	1	1	1	1	
1	1	1	1	0	0	1	1	1	

4 Tautologies and Contradictions

4.1 Definitions

<u>Definition</u>: A tautology is a compound proposition that is always true regardless of the values of the variables.

<u>Definition</u>: A contradiction is a compound proposition that is always false regardless of the values of the variables.

4.2 Examples

:

Theorem 1 (modus ponens). The formula $[p \land (p \rightarrow q)] \rightarrow q$ is a tautology

	p	q	$p \to q$	$p \land (p \rightarrow q)$	$[p \land (p \to q)] \to q$
	0	0	1	0	1
D_{mood}	0	1	1	0	1
Proof.	1	0	0	0	1
	1	1	1	1	1
					ı

Since this formula always has the value 1 for each possibility, the formula is a tautology.

5 Logical Equivalence

<u>**Definition**</u>: 2 compound propositions P and Q are called <u>logically equivalent</u> if $P \leftrightarrow Q$ is a tautology. We write $P \iff Q$.

Theorem 2 (contrapositive rule). $(p \to q) \iff (\neg q \to \neg p)$.

	p	q	$p \rightarrow q$	$\neg q$	$\neg p$	$\neg q \to \neg p$
	0	0	1	1	1	1
Proof.	0	1	1	0	1	1
	1	0	0	1	0	0
	1	1	1	0	0	1

Since the two propositions always have the same value, they are logically equivalent.

6 Logical Implication

<u>Definition</u>: We say that a compound proposition P logically implies Q if $P \to Q$ is a tautology. We write $P \implies Q$.

7 Some True Facts

- 1. $\neg \neg p \iff p$ double negation
- 2. $p \land q \iff q \land p$ $p \lor q \iff q \lor p$ commutativity
- 3. $p \wedge (q \wedge r) \iff (p \wedge q) \wedge r$ $p \vee (q \vee r) \iff (p \vee q) \vee r$ associativity
- 4. $p \wedge (q \vee r) \iff (p \wedge q) \vee (p \wedge r)$ $p \vee (q \wedge r) \iff (p \vee q) \wedge (p \vee r)$ distributive laws
- 5. $\neg (p \land q) \iff \neg p \lor \neg q$ $\neg (p \lor q) \iff \neg p \land \neg q$ De Morgan's laws.
- 6. $p \land (p \rightarrow q) \implies q \mod s$ ponens
- 7. $p \implies p \lor q$
- 8. $p \wedge q \implies p$ (also implies q obviously...)