Section 2.4 - Equivalence Relations

Ari Mermelstein

May 8, 2018

1 Direct Proofs

<u>Definition</u>: A direct proof is a proof where you use the antecedent of the implication that you are trying to prove along with other theorems and facts in in order to prove a result.

Example:

Theorem 1. If n is an even integer, then n^2 is also an even integer.

Proof. Since n is even, we can write n=2k for some $k \in \mathbb{Z}$. Then, $n^2=(2k)^2=4k^2=2(2k^2)$. Since $2k^2$ is itself an integer, we conclude that n^2 is even.

Theorem 2. The product of an even number and an odd number is even.

Proof. Let x be an even number and let y be an odd number. Then we can write x=2k and y=2m+1 for some $k,m\in\mathbb{Z}$. Then, xy=2k(2m+1)=4km+2k=2(2km+k). Since 2km+k is an integer, we conclude that xy is even.

Sometimes we have to break up a problem into cases to accomplish a direct proof.

Theorem 3. $n^2 - 2$ is not divisible by 3 for all $n \ge 1$.

Proof. For any number n, the remainder when you divide it by 3 is either 0,1, or 2. Therefore, we can write any n as n = 3k + r where $r \in \{0, 1, 2\}$. So $n^2 - 2 = (3k + r)^2 - 2 = 9k^2 + 6rk + r^2 - 2$. We see that the $9k^2 + 6rk$ part is divisible by 3. What about $r^2 - 2$? Well, it either equals 0 - 2 = -2 or 1 - 2 = -1 or 4 - 2 = 2, none of which are divisible by 3.

2 Proof by contrapositive

Sometimes its easier to prove the contrapositive of an implication than the implication itself.

Theorem 4. If n^2 is an even integer, then n is also an even integer.

Proof. Since n^2 is hard to quantify, let's prove the contrapositive. Namely, let's prove that if n is NOT even, then n^2 is also NOT even.

If n is odd, we can write n=2k+1 for some $k \in \mathbb{Z}$. Then $n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$ which is an odd number.

3 Proof by Contradiction

Theorem 5. If $\sqrt{2}$ is not a rational number.

Proof. Suppose for purposes of contradiction that $\sqrt{2} = \frac{a}{b}$ where a and b have been reduced to

lowest terms. Then $2 = \frac{a^2}{b^2} \implies 2b^2 = a^2$. This tells us that a^2 is even. By the Theorem 4 above, a is also even. Therefore, let a = 2k. We can rewrite $a^2 = (2k)^2 = 4k^2 = 2b^2$. This implies that b is also even. If a and b are both even, then they weren't really reduced to lowest terms. Contradiction!

Theorem 6. There are (countably) infinitely many primes.

Proof. Suppose that there were only finitely many primes. Then, you could list all of the prime numbers p_1, p_2, \dots, p_n . Consider $k = p_1 p_2 p_3 \dots p_n + 1$. This number is not divisible by any of $p_1, p_2, \dots p_n$. Therefore, either this number is a prime number itself, or it has a prime factor that isn't on the list. Contradiction!