Section 3.1 - Relations

Ari Mermelstein

May 8, 2018

1 Relations

1.1 Definitions

<u>Definition</u>: A relation R from a set S to a set T is a subset of $S \times T$. I.e. it's a set of ordered pairs.

<u>Definition</u>: Consider $s \in S$, $t \in T$. We say that s is related to t under R if $(s,t) \in \mathbb{R}$. We can also just write s R t.

1.2 Notes

NB: A relation doesn't have to be a function.

If S and T are not the same, then the types of relations we're talking about associate one type of a data with another. You can think of setting up a mapping from one type to another (e.g. a map [or possibly a multimap] data structure). However, if S = T, were talking about a relation on a set S, between 2 elements of S.

2 Properties of Relations on a Set

1. Reflexive: $\forall x \times R \times R$

2. Antireflexive: x R x is never true.

3. Symmetric: $\forall x, y \ xRy \implies yRx$

4. **Antisymmetric**: $\forall x, y \ xRy \ \land \ yRx \ \text{only if} \ x = y$.

5. <u>Transitive</u>: $\forall x, y, z \ xRy \land yRz \implies xRz$

3 Examples

- 1. ≤
- 2. <

3. congruence modulo p with respect to \mathbb{Z} . In other words m is congruent to n modulo p if m-n is a multiple of p.

4 Converse Relation

<u>Definition</u>: Consider a relation $R \subseteq (S \times T)$. Then the converse relation, R^{\leftarrow} is the relation from T to S given by $(t,s) \in R^{\leftarrow} \iff (s,t) \in R$.