Section 3.4 - Equivalence Relations

Ari Mermelstein

May 8, 2018

1 Definition

<u>Definition</u>: An equivalence relation \sim on a set S is a relation on S that is reflexive, symmetric, and transitive.

1.1 Examples

- 1. Define \sim on a set V of vertices from a graph $G=(V,E,\gamma)$. For $u,v\in V$, Let $u\sim v$ mean that u=v or there is a path in G from u to v.
- 2. Define C on a set of marbles, M. Let u C v mean that u and v have the same color.

2 Equivalence classes

<u>Definition</u>: Let R be an equivalence relation on a set S, and let $s \in S$. Then, the equivalence class of s, denoted [s] is the set of all elements related to s under R. I.e. $[s] = \{t \in S : s \ R \ t\}$. Note: The equivalence classes of a relation R are disjoint.

2.1 Examples

What do the equivalence classes look like for C and \sim above?