### CISC 2210 Spring 2018 Quiz 3

#### Ari Mermelstein

April 10, 2018

# 1 Write each of the following in Predicate Notation ( 1 point each )

Make sure that you use quantifiers properly and bind all variables.

- 1. For all  $x \in \mathbb{R}$ , there exists  $\frac{1}{x}$  such that  $(x)\frac{1}{x} = 1$ .
- 2. There exists  $n \in \mathbb{N}$  such that for all  $m \in \mathbb{N}$ , m < n.

### 2 Determine the truth values of the following: (2 points each)

- 1.  $\forall_{x \in \mathbb{R}} \exists_{y \in \mathbb{R}} x > y$ .
- $2. \ \exists_{x \in \mathbb{R}} \ \exists_{y \in \mathbb{R}} \ 2x = y.$

# 3 Write the following without using a $\neg$ in front of the notation (2 points each)

Let C = the set of Brooklyn College students.

- $1.\$  It is not true that all Brooklyn College students are CS majors.
- 2. It's not true that some Brooklyn College students don't take any classes.

#### 4 Infinite sets (5 points)

1. Prove that  $\{n \in \mathbb{N} : n \text{ is odd }\}$  has the same cardinality as  $\mathbb{N}$ .

2. Consider the family of functions  $\{f \mid f : \mathbb{N} \to \{0,1\}\}$ . That is the set of all Boolean functions. Prove that this set is not countable. In other words, show that it does **not** have the same cardinality as  $\mathbb{N}$ .

(Hint: Try to list these functions as a table. One side of the table is numbers from  $\mathbb{N}$  and the other is a list of what each function does on that input. Make the same diagonal argument as we did for  $\mathbb{R}$ .) Please be very specific about what goes wrong when you list it as a table. Be as formal as you can.