Review

Ari Mermelstein

$March\ 2019$

1 Review Material

1.1 Discrete math

- 1. Induction
- 2. Sets
- 3. Logic

1.2 Calculus

- 1. Limits
- 2. L'Hôpital's rule
- 3. derivatives

1.3 Data structures

- 1. Recursion
- 2. Linked lists
- 3. stacks
- 4. queues
- 5. BSTs

2 Binary search

```
Input: An array A[1..n]
Input: An integer n
Input: An integer to search for called target
Output: An index 1 \le i \le n such that A[i] = target
start = 1;
end = n;
while start \leq end do
   mid = \lfloor \frac{start + end}{2} \rfloor;
   if target = A[mid] then
    return mid;
   end
   else if target < A[mid] then
    end = mid-1;
   end
   else
    start = mid+1;
   end
\quad \mathbf{end} \quad
return NOT_FOUND;
```

2.1 How long does binary search take?

Let T(n) be the worst case running time for binary search on an array of size n. Then

$$T(n) = T(\frac{n}{2}) + 1$$

is an equation that represents the running time. How do we solve this? One way is by substitution.

2.2 Substitution method

- 1. Guess a solution
- 2. Prove it's correct by induction.

$$T(n) = T(\frac{n}{2}) + 1$$

$$T(\frac{n}{2}) = T(\frac{n}{4}) + 1$$

so
$$T(n) = T(\frac{n}{4}) + 1 + 1$$

• • •

$$T(n) = T(\frac{n}{2^k}) + k$$

We Want $2^k = n \Rightarrow k = \log_2 n$.

$$T(n) = 1 + \log_2 n.$$

2. Prove by induction.

We want to prove that $T(n) \leq c \log_2 n$ for some positive c and for all n.

Base case: $T(k) = \log_2 k \le c$ as long as c is sufficiently large.

Inductive case:

$$T(n) = T(\frac{n}{2}) + 1$$

By the inductive hypothesis

$$\Rightarrow T(n) \le c \log_2(\frac{n}{2}) + 1$$

$$\Rightarrow T(n) \le c(\log_2 n - \log_2 2) + 1$$

$$\Rightarrow T(n) \le c \log_2 n - c + 1$$

$$\Rightarrow T(n) \le c \log_2 n - (c+1)$$

$$\Rightarrow T(n) \leq c \log_2 n$$
 as long as $c+1 > 0 \Rightarrow c \geq 1$

2.3 Questions similar to binary search

3 Sorting

3.1 InsertionSort pseudocode

3.2 Analyzing insertion sort

The outer loop happens n-1 times. The inner loop, in the worst case has to run i-1 steps. So the worst case time is given by:

$$\sum_{j=1}^{n-1} j = \frac{n(n-1)}{2} = \Theta(n^2)$$

3.3 MergeSort Pseudocode

3.4 Merge

```
Input: An array A
Input: integers start1, end1, start2, end2
;// We will view A as having 2 subarrays A[start1..end1] and
 A[start2..end2]
Let result[1..end2-start1+1] be a new array
indexL = start1;
indexR = start2;
indexRes = 1;
;// Go through both subarrays and pick the minimum element.
 Stop when one of the subarrays runs out.
while indexL \leq end1 and indexR \leq end2 do
   if A[indexL] < A[indexR] then
      result[indexRes] = A[indexL];
      indexL = indexL + 1;
   end
   else
      result[indexRes] = A[indexR];
      indexR = indexR + 1;
   end
   indexRes = indexRes + 1;
end
; // Copy the remaining subarray over
while indexL \leq end1 do
   result[indexRes] = A[indexL];
   indexL = indexL + 1;
   indexRes = indexRes + 1;
\mathbf{end}
while indexR \le end1 do
   result[indexRes] = A[indexR];
   indexR = indexR + 1;
   indexRes = indexRes + 1;
;// Copy the result back
indexRes=1;
for i = start1 to end2 do
A[i] = result[indexRes];
end
```

3.5 Mergesort

4 Algorithm complexities

4.1 Running Time and Space Complexity

<u>Definition</u>: The running time of an algorithm A on a particular input is the number of primitive operations A performs when run on the input.

<u>Definition</u>: The space complexity of an algorithm A on a particular input is the amount of extra space the algorithm requires to run. Note: local variables count as $\Theta(1)$ space.

4.2 Best, Worst, Average Case

<u>Definition</u>: The best case time of an algorithm is the minimum number of primitive operations the algorithm requires over all possible inputs.

<u>Definition</u>: The worst case time of an algorithm is the maximum number of primitive operations the algorithm requires over all possible inputs.

<u>Definition</u>: The average case running time is the expectation of the running time over all possible inputs given a particular probability distribution.

4.3 $O, \Omega, \Theta, \omega, o$

<u>Definition</u>: We say that one function f(n) is O(g(n)) if there exist constants $c \in \mathbb{R}^+, n_0 \in \mathbb{N}$ such that $f(n) \leq cg(n)$ for all $n \geq n_0$.

Example: $n \in O(n^2)$ why?

<u>Definition</u>: We say that one function f(n) is $\Omega(g(n))$ if there exist constants $c \in \mathbb{R}^+, n_0 \in \mathbb{N}$ such that $f(n) \geq cg(n)$ for all $n \geq n_0$.

<u>Definition</u>: We say that one function f(n) is $\Theta(g(n))$ if there exist constants $c_1, c_2 \in \mathbb{R}^+, n_0 \in \mathbb{N}$ such that $c_1g(n) \leq f(n) \leq c_2g(n)$ for all $n \geq n_0$.

limit definitions

<u>Definition</u>: We say that one function f(n) is O(g(n)) if $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c$, for some $c\geq 0$

<u>Definition</u>: We say that one function f(n) is $\Omega(g(n))$ if $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c$, for

some
$$c > 0$$
 or $\lim_{n \to \infty} \frac{f(n)}{g(n)} \to \infty$.

<u>Definition</u>: We say that one function f(n) is $\Theta(g(n))$ if $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c$, for some c>0

Talk about o and ω .

5 Theorems

- 1. $\Theta(f(n)) = \Omega(f(n)) \cap O(f(n))$
- 2. Θ is an equivalence relation.

6 Recurrences

- 1. substitution
- 2. recursion trees + substitution
- 3. Master theorem

7 Heaps

- 1. definition
- 2. inserting
- 3. removing
- 4. building a heap
- 5. heapsort