Review

Ari Mermelstein

March 2019

Review Material

Discrete math

. Induction

Sets

Logic

Calculus

. Limits

L’Hopital’s rule

derivatives

Data structures

. Recursion

Linked lists
stacks

queues

BSTs

2 Binary search

Input: An array A[l..n]

Input: An integer n

Input: An integer to search for called target
Output: An index 1 < i < n such that A[i] = target
start = 1;

end = n;

while start < end do

mid = | starghend |;

if target = A[mid] then
‘ return mid;

end

else if target < A[mid] then
‘ end = mid-1;

end

else
‘ start = mid+1;

end

end

return NOT_FOUND;

2.1 How long does binary search take?

Let T'(n) be the worst case running time for binary search on an array of size
n. Then

n
2
is an equation that represents the running time.
How do we solve this? One way is by substitution.

T(n)=T(=)+1

2.2 Substitution method

1. Guess a solution
2. Prove it’s correct by induction.
Tn)=T(%)+1

T(n) =T(%)+k

[N~}

We Want 2% = n = k = log, n.

T(n) =1+ logyn.

2. Prove by induction.
We want to prove that T'(n) < clog, n for some positive ¢ and for all n.

Base case: T'(k) =log, k < ¢ as long as c¢ is sufficiently large.

Inductive case:

By the inductive hypothesis

= T(n) < clogy(%) +1

= T(n) < c(logyn —logy2) + 1
=T(n) <cloggn—c+1
=T(n) <cloggn —(c+1)

=T(n)<cloganaslongasc+1>0=c>1

2.3 Questions similar to binary search
3 Sorting

3.1 InsertionSort pseudocode

Input: An array A[l..n]

Input: An integer n

for i=2 to n do

key = Ali;

location = 1—]. N // location represents the locations we are looking at to see

where the key goes

while location > 0 and Allocation] > key do
Allocation+1] = A[location];
location = location-1;

end

Allocation + 1] = key;

end

3.2 Analyzing insertion sort

The outer loop happens n — 1 times. The inner loop, in the worst case has to
run ¢ — 1 steps. So the worst case time is given by:

Y =" — o)

3.3 MergeSort Pseudocode
3.4 Merge

Input: An array A

Input: integers startl, endl, start2, end2

; // We will view A as having 2 subarrays A[startl..endl] and
Alstart2..end?2]

Let result[l..end2-start1+1] be a new array

indexL, = startl;

indexR = start2;

indexRes = 1;

; // Go through both subarrays and pick the minimum element.
Stop when one of the subarrays runs out.

while indexL < endl and indexR < end2 do

if AlindexL] < AlindexR] then
result[indexRes] = AlindexL];
indexLL = indexL + 1;

end

else
result[indexRes] = A[indexR];
indexR = indexR + 1;

end

indexRes = indexRes + 1;

end

; // Copy the remaining subarray over

while indexL < endl do
result[indexRes] = AlindexL];
indexLL = indexL + 1;
indexRes = indexRes + 1;

end

while indexR < endl do
result[indexRes] = A[indexR];
indexR = indexR + 1;
indexRes = indexRes + 1;

end

; // Copy the result back

indexRes=1;

for i = start! to end2 do

| A[i] = result[indexRes];
end

3.5 Mergesort

Input: An array A
Input: integers start, end
if end-start <1 then
‘ return;
end
mid = floor((start + end) /2) ;
mergesort(A, start, mid);
mergesort(A, mid+1, end);

4 Algorithm complexities

4.1 Running Time and Space Complexity

Definition: The running time of an algorithm A on a particular input is the
number of primitive operations A performs when run on the input.

Definition: The space complexity of an algorithm A on a particular input
is the amount of extra space the algorithm requires to run. Note: local variables
count as ©(1) space.

4.2 Best, Worst, Average Case

Definition: The best case time of an algorithm is the minimum number of
primitive operations the algorithm requires over all possible inputs.
Definition: The worst case time of an algorithm is the maximum number
of primitive operations the algorithm requires over all possible inputs.
Definition: The average case running time is the expectation of the running
time over all possible inputs given a particular probability distribution.

4.3 0,0,0,w,0

Definition: We say that one function f(n) is O(g(n)) if there exist constants
¢ € R* ng € N such that f(n) < cg(n) for all n > no.

Example: n € O(n?) why?

Definition: We say that one function f(n) is Q(g(n)) if there exist constants
c € R ng € N such that f(n) > cg(n) for all n > ny.

Definition: We say that one function f(n) is ©(g(n)) if there exist constants
c1,¢2 € R ng € N such that c1g(n) < f(n) < cag(n) for all n > ng.

limit definitions

f(n)

Definition: We say that one function f(n) is O(g(n)) if li_>m o) = ¢, for
some ¢ > 0
Definition: We say that one function f(n) is Q(g(n)) if lim f((TL; = ¢, for
n—oo g(n

f(n)

some ¢ > 0 or lim ——= — oco.
n—o0 g(n)
Definition: We say that one function f(n) is ©(g(n)) if lim fén; = ¢, for
n—oo g n
some ¢ > 0

Talk about o and w.

5 Theorems

L O(f(n)) = Q(f(n)) NO(f(n))

2. © is an equivalence relation.

6 Recurrences

1. substitution
2. recursion trees + substitution

3. Master theorem

7 Heaps
1. definition
2. inserting
3. removing
4. building a heap

5. heapsort

