
Review

Ari Mermelstein

March 2019

1 Review Material

1.1 Discrete math

1. Induction

2. Sets

3. Logic

1.2 Calculus

1. Limits

2. L’Hôpital’s rule

3. derivatives

1.3 Data structures

1. Recursion

2. Linked lists

3. stacks

4. queues

5. BSTs

1

2 Binary search

Input: An array A[1..n]
Input: An integer n
Input: An integer to search for called target
Output: An index 1 ≤ i ≤ n such that A[i] = target
start = 1;
end = n;
while start ≤ end do

mid = b start+end
2 c;

if target = A[mid] then
return mid;

end
else if target < A[mid] then

end = mid-1;
end
else

start = mid+1;
end

end
return NOT FOUND;

2.1 How long does binary search take?

Let T (n) be the worst case running time for binary search on an array of size
n. Then

T (n) = T (
n

2
) + 1

is an equation that represents the running time.
How do we solve this? One way is by substitution.

2.2 Substitution method

1. Guess a solution
2. Prove it’s correct by induction.

T (n) = T (n
2) + 1

T (n
2) = T (n

4) + 1

so T (n) = T (n
4) + 1 + 1

...

2

T (n) = T (n
2k

) + k

We Want 2k = n⇒ k = log2 n.

T (n) = 1 + log2 n.

2. Prove by induction.
We want to prove that T (n) ≤ c log2 n for some positive c and for all n.

Base case: T (k) = log2 k ≤ c as long as c is sufficiently large.

Inductive case:

T (n) = T (n
2) + 1

By the inductive hypothesis

⇒ T (n) ≤ c log2(n
2) + 1

⇒ T (n) ≤ c(log2 n− log2 2) + 1

⇒ T (n) ≤ c log2 n− c + 1

⇒ T (n) ≤ c log2 n− (c + 1)

⇒ T (n) ≤ c log2 n as long as c + 1 > 0⇒ c ≥ 1

3

2.3 Questions similar to binary search

3 Sorting

3.1 InsertionSort pseudocode

Input: An array A[1..n]
Input: An integer n
for i=2 to n do

key = A[i];
location = i-1 ; // location represents the locations we are looking at to see

where the key goes

while location > 0 and A[location] > key do
A[location+1] = A[location];
location = location-1;

end
A[location + 1] = key;

end

3.2 Analyzing insertion sort

The outer loop happens n − 1 times. The inner loop, in the worst case has to
run i− 1 steps. So the worst case time is given by:

n−1∑
j=1

j =
n(n− 1)

2
= Θ(n2)

4

3.3 MergeSort Pseudocode

3.4 Merge

Input: An array A
Input: integers start1, end1, start2, end2
; // We will view A as having 2 subarrays A[start1..end1] and

A[start2..end2]

Let result[1..end2-start1+1] be a new array
indexL = start1;
indexR = start2;
indexRes = 1;
; // Go through both subarrays and pick the minimum element.

Stop when one of the subarrays runs out.

while indexL ≤ end1 and indexR ≤ end2 do
if A[indexL] < A[indexR] then

result[indexRes] = A[indexL];
indexL = indexL + 1;

end
else

result[indexRes] = A[indexR];
indexR = indexR + 1;

end
indexRes = indexRes + 1;

end
; // Copy the remaining subarray over

while indexL ≤ end1 do
result[indexRes] = A[indexL];
indexL = indexL + 1;
indexRes = indexRes + 1;

end
while indexR ≤ end1 do

result[indexRes] = A[indexR];
indexR = indexR + 1;
indexRes = indexRes + 1;

end
; // Copy the result back

indexRes=1;
for i = start1 to end2 do

A[i] = result[indexRes];
end

5

3.5 Mergesort

Input: An array A
Input: integers start, end
if end-start ≤ 1 then

return;
end
mid = floor((start + end) /2) ;
mergesort(A, start, mid);
mergesort(A, mid+1, end);

4 Algorithm complexities

4.1 Running Time and Space Complexity

Definition: The running time of an algorithm A on a particular input is the
number of primitive operations A performs when run on the input.

Definition: The space complexity of an algorithm A on a particular input
is the amount of extra space the algorithm requires to run. Note: local variables
count as Θ(1) space.

4.2 Best, Worst, Average Case

Definition: The best case time of an algorithm is the minimum number of
primitive operations the algorithm requires over all possible inputs.

Definition: The worst case time of an algorithm is the maximum number
of primitive operations the algorithm requires over all possible inputs.

Definition: The average case running time is the expectation of the running
time over all possible inputs given a particular probability distribution.

4.3 O,Ω,Θ, ω, o

Definition: We say that one function f(n) is O(g(n)) if there exist constants
c ∈ R+, n0 ∈ N such that f(n) ≤ cg(n) for all n ≥ n0.

Example: n ∈ O(n2) why?
Definition: We say that one function f(n) is Ω(g(n)) if there exist constants

c ∈ R+, n0 ∈ N such that f(n) ≥ cg(n) for all n ≥ n0.
Definition: We say that one function f(n) is Θ(g(n)) if there exist constants

c1, c2 ∈ R+, n0 ∈ N such that c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0.
limit definitions

Definition: We say that one function f(n) is O(g(n)) if lim
n→∞

f(n)

g(n)
= c, for

some c ≥ 0

Definition: We say that one function f(n) is Ω(g(n)) if lim
n→∞

f(n)

g(n)
= c, for

6

some c > 0 or lim
n→∞

f(n)

g(n)
→∞.

Definition: We say that one function f(n) is Θ(g(n)) if lim
n→∞

f(n)

g(n)
= c, for

some c > 0
Talk about o and ω.

5 Theorems

1. Θ(f(n)) = Ω(f(n)) ∩O(f(n))
2. Θ is an equivalence relation.

6 Recurrences

1. substitution

2. recursion trees + substitution

3. Master theorem

7 Heaps

1. definition

2. inserting

3. removing

4. building a heap

5. heapsort

7

