
Review

Ari Mermelstein

May 19, 2019

1 Review Material

1.1 Discrete math

1. Induction

2. Sets

3. Logic

1.2 Calculus

1. Limits

2. L’Hôpital’s rule

3. derivatives: rules

(a) (fg)′ = f ′g + fg′

(b) (f
g)′ = gf ′−fg′

g2)

4. log rules

(a) log(ab) = log a + log b

(b) log(a
b) = log a− log b

(c) logb a = logc b
logc a

(d) nlogb a = alogb n

1.3 Data structures

1. Recursion

2. Linked lists

3. stacks

4. queues

5. BSTs

1

2 Binary search

Input: An array A[1..n]
Input: An integer n
Input: An integer to search for called target
Output: An index 1 ≤ i ≤ n such that A[i] = target
start = 1;
end = n;
while start ≤ end do

mid = b start+end
2 c;

if target = A[mid] then
return mid;

end
else if target < A[mid] then

end = mid-1;
end
else

start = mid+1;
end

end
return NOT FOUND;

2.1 How long does binary search take?

Let T (n) be the worst case running time for binary search on an array of size
n. Then

T (n) = T (
n

2
) + 1

is an equation that represents the running time.
How do we solve this? One way is by substitution.

2.2 Substitution method

1. Guess a solution
2. Prove it’s correct by induction.

T (n) = T (n
2) + 1

T (n
2) = T (n

4) + 1

so T (n) = T (n
4) + 1 + 1

...

2

T (n) = T (n
2k

) + k

We Want 2k = n⇒ k = log2 n.

T (n) = 1 + log2 n.

2. Prove by induction.
We want to prove that T (n) ≤ c log2 n for some positive c and for all n.

Base case: T (k) = log2 k ≤ c as long as c is sufficiently large.

Inductive case:

T (n) = T (n
2) + 1

By the inductive hypothesis

⇒ T (n) ≤ c log2(n
2) + 1

⇒ T (n) ≤ c(log2 n− log2 2) + 1

⇒ T (n) ≤ c log2 n− c + 1

⇒ T (n) ≤ c log2 n− (c + 1)

⇒ T (n) ≤ c log2 n as long as c + 1 > 0⇒ c ≥ 1

3

2.3 Questions similar to binary search

3 Sorting

3.1 InsertionSort pseudocode

Input: An array A[1..n]
Input: An integer n
for i=2 to n do

key = A[i];
location = i-1 ; // location represents the locations we are looking at to see

where the key goes

while location > 0 and A[location] > key do
A[location+1] = A[location];
location = location-1;

end
A[location + 1] = key;

end

3.2 Analyzing insertion sort

The outer loop happens n − 1 times. The inner loop, in the worst case has to
run i− 1 steps. So the worst case time is given by:

n−1∑
j=1

j =
n(n− 1)

2
= Θ(n2)

4

3.3 MergeSort Pseudocode

3.4 Merge

Input: An array A
Input: integers start1, end1, start2, end2
; // We will view A as having 2 subarrays A[start1..end1] and

A[start2..end2]

Let result[1..end2-start1+1] be a new array;
indexL = start1;
indexR = start2;
indexRes = 1;
; // Go through both subarrays and pick the minimum element.

Stop when one of the subarrays runs out.

while indexL ≤ end1 and indexR ≤ end2 do
if A[indexL] < A[indexR] then

result[indexRes] = A[indexL];
indexL = indexL + 1;

end
else

result[indexRes] = A[indexR];
indexR = indexR + 1;

end
indexRes = indexRes + 1;

end
; // Copy the remaining subarray over

while indexL ≤ end1 do
result[indexRes] = A[indexL];
indexL = indexL + 1;
indexRes = indexRes + 1;

end
while indexR ≤ end1 do

result[indexRes] = A[indexR];
indexR = indexR + 1;
indexRes = indexRes + 1;

end
; // Copy the result back

indexRes=1;
for i = start1 to end2 do

A[i] = result[indexRes];
end

5

3.5 Mergesort

Input: An array A
Input: integers start, end
if end-start ≤ 0 then

return;
end
mid = floor((start + end) /2) ;
mergesort(A, start, mid);
mergesort(A, mid+1, end);
merge(A, start, mid, mid+1, end);

4 Algorithm complexities

4.1 Running Time and Space Complexity

Definition: The running time of an algorithm A on a particular input is the
number of primitive operations A performs when run on the input.

Definition: The space complexity of an algorithm A on a particular input
is the amount of extra space the algorithm requires to run. Note: local variables
count as Θ(1) space.

4.2 Best, Worst, Average Case

Definition: The best case time of an algorithm is the minimum number of
primitive operations the algorithm requires over all possible inputs.

Definition: The worst case time of an algorithm is the maximum number
of primitive operations the algorithm requires over all possible inputs.

Definition: The average case running time is the expectation of the running
time over all possible inputs given a particular probability distribution.

4.3 O,Ω,Θ, ω, o

Definition: We say that one function f(n) is O(g(n)) if there exist constants
c ∈ R+, n0 ∈ N such that f(n) ≤ cg(n) for all n ≥ n0.

Example: n ∈ O(n2) why?
Definition: We say that one function f(n) is Ω(g(n)) if there exist constants

c ∈ R+, n0 ∈ N such that f(n) ≥ cg(n) for all n ≥ n0.
Definition: We say that one function f(n) is Θ(g(n)) if there exist constants

c1, c2 ∈ R+, n0 ∈ N such that c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0.
limit definitions

Definition: We say that one function f(n) is O(g(n)) if lim
n→∞

f(n)

g(n)
= c, for

some c ≥ 0

Definition: We say that one function f(n) is Ω(g(n)) if lim
n→∞

f(n)

g(n)
= c, for

6

some c > 0 or lim
n→∞

f(n)

g(n)
→∞.

Definition: We say that one function f(n) is Θ(g(n)) if lim
n→∞

f(n)

g(n)
= c, for

some c > 0
Talk about o and ω.

5 Theorems

1. Θ(f(n)) = Ω(f(n)) ∩O(f(n))
2. Θ is an equivalence relation.

6 Recurrences

1. substitution

2. recursion trees + substitution

3. Master theorem

7 Heaps

1. definition

2. inserting

3. removing

4. building a heap

5. heapsort

8 Heaps pseudocode

insert(A, heapsize, value)

Input: A heap A
Input: integers heapsize, value
A[heapsize+1] = value;
heapsize = heapsize+1 ;
index = heapSize;
while index ≥ 0andA[parent(index)] < A[index] do

swap(A[index], A[parent(index)]);
index = parent(index);

end

7

Remove(A, heapsize)

Input: A heap A
Input: integer heapsize
swap(A[heapsize], A[1];
heapsize = heapsize - 1 ;
fixheap(A, 1, heapSize);

fixheap(A, i, heapSize)

Input: A heap A
Input: integer heapsize, i
max = i;
if leftChild(i) ≤ heapSize and A[leftChild(i)] > A[max] then

max = leftChild(i);
end
if rightChild(i) ≤ heapSize and A[rightChild(i)] > A[max] then

max = rightChild(i);
end
if max = i then

return;
end
swap(A[max], A[i]);
fixheap(A, max, heapSize);

Heapsort(A, n)

Input: A heap A
Input: integer n
for i=bn2 cdownto1 do

fixHeap(A, i, n);
end
n = heapSize;
while heapSize > 0 do

swap(A[1], A[heapSize]);
heapSize = heapSize-1;
fixHeap(A, 1, heapSize);

end

8

9 Quicksort

9.1 Partition

The partition algorithm selects an element as the pivot, and the moves every-
thing smaller or equal to the left and everything greater than or equal to the
right. The invariant is that every number in A[start..b] ≤ pivot and every num-
ber in A[b + 1..i− 1] ≥ pivot. Everything in A[i..end] is unknown.

Partition(A, start, end)

Input: an array A
Input: integers start and end
Output: The pivot index
b = start;
for i=start+1 to end do

if A[i] < pivot then
b = b+1 ;
swap(A, i, b);

end

end
swap(A, start, b);
return b;

9.2 Quicksort

The idea is to run partition on the array and then recursively sort both subar-
rays.

Quicksort(A, start, end)

Input: an array A
Input: integers start and end
if end ≤ start then

return;
end
p = partition(A, start, end);
Quicksort(A, start, p-1);
Quicksort(A, p+1, end);

9

9.3 Analysis

The worse case for quicksort is when the array is already sorted or reverse
sorted. The pivot will always not give us a good split and we will wind up with
a running time of 1+2+3+ ·+n = Θ(n2). However, if we pick a random pivot,
then the running time will be Θ(n log n) with high probability.

10 Selection

10.1 Finding the max or the min

The straightforward algorithm for finding the min or the max is the following:

Min(A, n)

Input: an array A
Input: an integer n, the length of A
Output: The minimum of A
min = A[1];
for i=2 to n do

if A[i] < min then
min = A[i];

end

end
return min;

This takes n-1 comparisons in the worst case. Max is similar.

10.2 Simultaneous max and min

If we want to find the max and min at the same time, we could do it in n-1 +
n-1 = 2n-2 comparisons. Or we can find them simultaneously with the following
recursive algorithm.

Min-And-Max(A, start, end)

10

Input: an array A
Input: integers start and end
Output: An ordered pair (min, max)
if end− start ≤ 1 then

if A[start] < A[end] then
return (A[start], A[end]);

end
else

return (A[end], A[start]);
end

end

mid = b start+end
2 c;

(minLeft, maxLeft) = Min-And-Max(A, start, mid);
(minRight, maxRight) = Min-And-Max(A, mid+1, end);
min = minLeft;
max = maxLeft;
if minRight < min then

min = minRight;
end
if maxRight > max then

max = maxRight;
end
return (min, max);

10.2.1 Analysis

How long does this take?
It obeys the occurrence: T (n) = 2T (n/2) + 1, T (2) = 2.

T (n) = 2T (n
2) + 1

⇒= 4T (n
4) + 2 + 1

⇒= 8T (n
8) + 4 + 2 + 1

· · ·
⇒= 2kT (n

2k
) + 1 + 2 + · · ·+ 2k−1

Let n
2k

= 2⇒ 2k = n
2 , and 1 + 2 + · · ·+ 2k−1 = 2k − 1 = n

2 − 1.
⇒= 2n

2 + n
2 − 1.

This has solution T (n) = 3n
2 − 1.

10.3 Finding the Kth smallest

We can find the kth smallest number in an array as follows: Take the array A and
turn it into a min heap. Then pop the heap k times. This takes Θ(n+ k log n).
If k is small, this is a good algorithm, but if k = Θ(n), this is no longer all that
good.

11

A better algorithm is based on partition. Call partition using the pivot. Once
that happens, if k < pivotindex then you look in the left subarray. Otherwise,
you look in the right subarray. This takes Θ(n) time with high probability.

11 Graphs

11.1 Definitions

Definition: A Graph is a pair G = (V,E) where V is a set of vertices and E
is a set of edges. If G is a directed graph, then each e ∈ E is an ordered pair
(u, v) representing that u and v are related. If G is undirected, then each e ∈ E
is an unordered pair, {u, v}. (Abuse of notation: most books and papers use
(u, v) even for undirected graphs, but this is technically not true.)

Definition: A path is a sequence of vertices (v0, v1, v2, · · · , vk). The length
of a path is the number of edges in the path.

Definition: A cycle is a path that starts and ends at the same vertex.
A simple cycle is a cycle that doesn’t repeat vertices. Definition: A graph
is connected if every vertex is reachable from every other vertex. Connected
components of a graph are parts of the graph in which every vertex is reachable
from every other vertex.

Definition: The outdegree of a vertex v is the number of edges that leave v.
The indegree of a vertex v is the number of edges that enter v. In an undirected
graph, we just talk about degree.

Definition: a forest is an acyclic, undirected graph. A tree is an acyclic,
undirected, connected graph. A directed, acyclic graph is called a ”dag.”

11.2 BFS

Input: the adjacency lists of a graph G = (V, E)
Let visited be a new array;
for v ∈ V do

visited[v] = false;
end
for v ∈ V do

if not visited[v] then
BFS-Visit(G, v);

end

end

12

Input: the adjacency lists of a graph G = (V, E)
Input: The source vertex v
Input: The visited array
Let Q = ∅;
; // Q is the empty queue

Q.enqueue(v);
visited[v] = true;
visit(v);
while Q 6= ∅ do

w = Q.dequeue();
for u ∈ Adj[w] do

if not visited[u] then
Q.enqueue(u);
visited[u] = true;
visit(u);

end

end

end

Time Complexity: Θ(V + E).

11.3 DFS

Input: the adjacency lists of a graph G = (V, E)
Let visited be a new array;
for v ∈ V do

visited[v] = false;
end
for v ∈ V do

if not visited[v] then
DFS-Visit(G, v);

end

end

Input: the adjacency lists of a graph G = (V, E)
Input: The source vertex v
Input: The visited array
visited[v] = true;
visit(v);
for u ∈ Adj[v] do

if not visited[u] then
DFS-Visit(G, u, visited);

end

end

13

11.4 Dijkstra-Prim

Input: the adjacency lists of a graph G = (V, E, w)
Input: s, the source vertex
Let F = V;
; // F is the fringe

Let parent[|V |] be a new array;
Let H be a min heap;
Let T = ∅;
; // T is the MST

Let dist[|V |] be a new array;
; // dist[i] is the smallest edge to add vertex i into the

tree

for v ∈ V do
H.insert((v, ∞));
parent[v] = null;
dist[v] = ∞;

end
H.decreaseKey(s, 0);
for v ∈ Adj[s] do

H.decreaseKey(v, w(s, v));
parent[v] = s;
dist[v] = w(u,v);

end
while F 6= ∅ do

u = H.removeMin();
T = T ∪ {parent[u], u, w(u, parent(u))};
for v ∈ Adj[u] and v ∈ T do

if w(u, v) < dist[v] then
H.decreaseKey(v, w(u,v));
dist[v] = w(u,v);

end

end
F = F \ {u};

end

N.B.: You need to remember where in the heap each v is so that you can
implement decreaseKey() in Θ(log V) time.

14

11.5 Kruskal

Input: the adjacency lists of a graph G = (V, E, w)
Input: s, the source vertex
T = ∅;
Let Edges[|E|] be a new array;
Copy all edges into the array;
sort(Edges);
for e ∈ Edges do

if adding e doesn’t create a cycle then
T = T ∪ {e};

end

end

How do you decide if adding e creates a cycle? Use a Union-Find D.S. =
Disjoint sets D.S.

Make-Set(n):
Create an array parent[n]. set parent[i] = null for all 1 ≤ i ≤ n

Union(x, y): attach the smaller of the two trees to the larger.
make the root of the larger tree the representative.

Find(x): return the representative of x, but when you do it, bring up all of
the pointers to the root.

12 Dynamic Programming

The idea of dynamic programming is that some problems have recursive struc-
tures, but that the straightforward recursive algorithms take exponential time.
Intuitively, this is because many subproblems get computed many times. There
are two fixes: top-down recursion with memoization and bottom up with a table.
I’ll demonstrate both on fibonacci.

12.1 Fibonacci

Recall that the Fibonacci sequence is defined recursively as:

fib(n) =

{
1 n ≤ 2

fib(n− 1) + fib(n− 2) otherwise

One could program the näıve algorithm as follows:

15

fib(n):

Input: an integer n
Output: the nth fibonacci number
if n ≤ 2 then

return 1;
end
else

return fib(n-1) + fib(n-2);
end

It’s easy to see why this will take exponential time. In running this algorithm,
we will call fib(3) many times for large n.

The running time is Θ(Φn), where Φ = 1+
√
5

2 . = Bad!

12.1.1 Dynamic programming solution

The solution is either to memoize or to solve this bottom up. The bottom up
is as follows:
fib(n):

Input: an integer n
Output: the nth fibonacci number
Let results[1..n] be a new array ;
results[1] = 1;
results[2] = 1;
for i=3 to n do

results[i] = results[i-1] + results[i-2];
end
return results[n];

This takes Θ(n) time. This is a far cry for exponential. (Technically, you
can find fibonacci numbers in Θ(log n) time.)

12.2 Binomial Coefficients

Suppose we wanted to compute the number of ways to choose r objects from a
group of n, denoted

(
n
r

)
. You can theoretically do this with factorials, but this

is unrealistic since the size of the numbers grow huge very quickly and cannot
be stored in a word in the computer. So let’s leverage a recurrence:(

n

r

)
=

(
n− 1

r − 1

)
+

(
n− 1

r

)
(
n

0

)
= 1,

(
n

n

)
= 1

Conceptually, this means that you have 2 choices: you can choose the first
object, or not. If you choose it, you need to pick r − 1 more objects out of the

16

remaining n − 1. If you choose to leave it alone, you still need to pick r from
n− 1.

Proof: Look at the class notes!! It’s way too annoying to type up.
If we implement this algorithm directly, we will get the same horrible be-

havior as fibonacci.

12.2.1 Memoization

We can use the recursive algorithm above and add a hash table to remember
while still recursing. Example:
binom(n,r):

Input: integers n and r
Output:

(
n
r

)
Let map be a new, empty hash map;
return binom(n,r,map);

binom(n, r, map):

Input: integers n and r
Input: a hash map called map
Output:

(
n
r

)
int answer;
if map.containsKey((n,r)) then

return map.get((n,r));
end
else if r=0 or r=n then

ans = 1;
end
else

ans = binom(n-1, r-1, map) + binom(n-1, r, map);
end
map.put((n,r), ans);
return ans;

12.2.2 Dynamic programming

Let’s instead build a table:
binom(n. r)

17

Input: integers n and r
Output:

(
n
r

)
Let binom[0..n][0..r] be a new 2D array;
for i = 0 to n do

for j = 0 to min{i, r} do
if j= 0 or j = i then

binom[i][j] = 1;
end
else

binom[i][j] = binom[i-1][j-1] + binom[i-1][j];
end

end

end
return binom[n][r];

How long does this take? Θ(nr) ≈ Θ(n2). This is much better than expo-
nential.

12.3 Edit Distance

Given 2 strings S[1..n] and T[1..m], find the number of moves necessary to
transform S into T. A move is an insertion, deletion, or a switch of characters.

Näıve recursive algorithm The näıve recursive algorithm is to notice that we
can look at all prefixes of S and T, and figure out what to do with the new
character. If the new characters match, don’t do anything, and keep the answer
you used to have. Otherwise, find the minimum of insertion, deletion, and swap,
and add 1.

EditDistance(S, T, n, m)

Input: Strings S and T
Input: integers n and m, denoting the size of the prefixes
Output: the edit distance of S and T
if n = 0 then

return m;
end
else if m = 0 then

return n;
end
else if S[n] = T [m] then

return EditDistance(S, T, n-1, m-1);
end
else

return 1 + min{EditDistance(S, T,m− 1, n−
1), EditDistance(S, T,m, n− 1), EditDistance(S, T,m− 1, n);

end

This algorithm takes exponential time. To make it efficient, either memoize
or build a table. I’ll give you the table version.

18

Dynamic Programming

Input: Strings S and T
Input: integers n and m, the sizes of S and T
Output: the edit distance of S and T
Output: the dist array
Let dist[0..n][0..m] be a new 2D array;
for i=0 to n do

dist[i, 0] = i;
end
for i=0 to m do

dist[0, i] = i;
end
for i = 1 to n do

for j = 1 to m do
if S[i] = T[j] then

dist[i,j] = dist[i-1,j-1];
end
else

dist[i,j] = 1 + min{dist[i− 1, j − 1], dist[i− 1, j], dist[i, j − 1]};
end

end

end
return dist[n,m] and dist;

This takes Θ(nm) time.

12.3.1 Backtracking

Given the table, you can find an optimal alignment as follows:
Start with dist[n,m]. Then follow the rules in reverse until you get to

dist[0,0]. This only takes an additional Θ(max{n,m} time.

19

