AN S

Review

Ari Mermelstein

May 19, 2019

Review Material

Discrete math
Induction
Sets

Logic

Calculus

. Limits

L’Hopital’s rule
derivatives: rules

(a) (f9)' =fg+1d

(b) (£) = 452

log rules
(a) log(ab) =loga + logb
(b) log(%) = loga — logb

)
log,. b
(C) log, a = 1055,1
)

(d nlogba — alogbn

Data structures
Recursion
Linked lists
stacks

queues

BSTs



2 Binary search

Input: An array A[l..n]

Input: An integer n

Input: An integer to search for called target
Output: An index 1 < i < n such that A[i] = target
start = 1;

end = n;

while start < end do

mid = | starghend |;

if target = A[mid] then
‘ return mid;

end

else if target < A[mid] then
‘ end = mid-1;

end

else
‘ start = mid+1;

end

end

return NOT_FOUND;

2.1 How long does binary search take?

Let T'(n) be the worst case running time for binary search on an array of size
n. Then

n
2
is an equation that represents the running time.
How do we solve this? One way is by substitution.

T(n)=T(=)+1

2.2 Substitution method

1. Guess a solution
2. Prove it’s correct by induction.
Tn)=T(%)+1



T(n) =T(%)+k

[N~}

We Want 2% = n = k = log, n.

T(n) =1+ logyn.

2. Prove by induction.
We want to prove that T'(n) < clog, n for some positive ¢ and for all n.

Base case: T'(k) =log, k < ¢ as long as c¢ is sufficiently large.

Inductive case:

By the inductive hypothesis

= T(n) < clogy(%) +1

= T(n) < c(logyn —logy2) + 1
=T(n) <cloggn—c+1
=T(n) <cloggn —(c+1)

=T(n)<cloganaslongasc+1>0=c>1



2.3 Questions similar to binary search
3 Sorting

3.1 InsertionSort pseudocode

Input: An array A[l..n]

Input: An integer n

for i=2 to n do

key = Ali;

location = 1—]. N // location represents the locations we are looking at to see

where the key goes

while location > 0 and Allocation] > key do
Allocation+1] = A[location];
location = location-1;

end

Allocation + 1] = key;

end

3.2 Analyzing insertion sort

The outer loop happens n — 1 times. The inner loop, in the worst case has to
run ¢ — 1 steps. So the worst case time is given by:

Y =" — o)



3.3 MergeSort Pseudocode
3.4 Merge

Input: An array A

Input: integers startl, endl, start2, end2

; // We will view A as having 2 subarrays A[startl..endl] and
Alstart2..end?2]

Let result[l..end2-start1+1] be a new array;

indexL, = startl;

indexR = start2;

indexRes = 1;

; // Go through both subarrays and pick the minimum element.
Stop when one of the subarrays runs out.

while indexL < endl and indexR < end2 do

if AlindexL] < AlindexR] then
result[indexRes] = AlindexL];
indexLL = indexL + 1;

end

else
result[indexRes] = A[indexR];
indexR = indexR + 1;

end

indexRes = indexRes + 1;

end

; // Copy the remaining subarray over

while indexL < endl do
result[indexRes] = AlindexL];
indexLL = indexL + 1;
indexRes = indexRes + 1;

end

while indexR < endl do
result[indexRes] = A[indexR];
indexR = indexR + 1;
indexRes = indexRes + 1;

end

; // Copy the result back

indexRes=1;

for i = start! to end2 do

| A[i] = result[indexRes];
end



3.5 Mergesort

Input: An array A

Input: integers start, end

if end-start < 0 then

‘ return;

end

mid = floor((start + end) /2) ;
mergesort(A, start, mid);
mergesort(A, mid+1, end);
merge(A, start, mid, mid+1, end);

4 Algorithm complexities

4.1 Running Time and Space Complexity

Definition: The running time of an algorithm A on a particular input is the
number of primitive operations A performs when run on the input.

Definition: The space complexity of an algorithm A on a particular input
is the amount of extra space the algorithm requires to run. Note: local variables
count as ©(1) space.

4.2 Best, Worst, Average Case

Definition: The best case time of an algorithm is the minimum number of
primitive operations the algorithm requires over all possible inputs.
Definition: The worst case time of an algorithm is the maximum number
of primitive operations the algorithm requires over all possible inputs.
Definition: The average case running time is the expectation of the running
time over all possible inputs given a particular probability distribution.

4.3 0,09,0,w,0

Definition: We say that one function f(n) is O(g(n)) if there exist constants
¢ € R* ng € N such that f(n) < cg(n) for all n > no.

Example: n € O(n?) why?

Definition: We say that one function f(n) is Q(g(n)) if there exist constants
¢ € RT,ng € N such that f(n) > cg(n) for all n > ng.

Definition: We say that one function f(n) is ©(g(n)) if there exist constants
1,02 € RY ng € N such that ¢1g(n) < f(n) < cag(n) for all n > ng.

limit definitions

Definition: We say that one function f(n) is O(g(n)) if lim fgni = ¢, for
n—oo g(n
some ¢ > 0
Definition: We say that one function f(n) is Q(g(n)) if U f((ng = ¢, for
n—oo g(n



f(n)

some ¢ > 0 or lim ——= — oco.
n—oo g(n)
Definition: We say that one function f(n) is O(g(n)) if li_>m fén; = ¢, for
n oo g n

some ¢ > 0
Talk about o and w.

5 Theorems

1. ©(f(n)) = Q(f(n)) NO(f(n))

2. © is an equivalence relation.

6 Recurrences

1. substitution
2. recursion trees + substitution

3. Master theorem

7 Heaps

definition
inserting
removing

building a heap

A

heapsort

8 Heaps pseudocode

insert(A, heapsize, value)

Input: A heap A

Input: integers heapsize, value

Alheapsize+1] = value;

heapsize = heapsize+1 ;

index = heapSize;

while index > OandAlparent(index)] < Alindex] do
swap(Afindez/, Alparent(index)]);
index = parent(indez);

end



Remove(A, heapsize)

Input: A heap A
Input: integer heapsize
swap(Alheapsize], A[1];
heapsize = heapsize - 1 ;
fixheap(A, 1, heapSize);
fixheap(A, i, heapSize)

Input: A heap A

Input: integer heapsize, i

max = i;

if leftChild(i) < heapSize and AlleftChild(i)] > A[max] then
| max = leftChild(i);

end

if rightChild(i) < heapSize and A[rightChild(i)] > A[maz] then
| max = rightChild(i);

end

if maxz = 7 then
‘ return;

end

swap(A[max], A[i]);
fixheap(A, max, heapSize);
Heapsort(A, n)

Input: A heap A

Input: integer n

for i=| % |downtol do

‘ fixHeap(A, i, n);

end

n = heapSize;

while heapSize > 0 do
swap(A[1], AlheapSize]);
heapSize = heapSize-1;
fixHeap(A, 1, heapSize);

end



9 Quicksort

9.1 Partition

The partition algorithm selects an element as the pivot, and the moves every-
thing smaller or equal to the left and everything greater than or equal to the
right. The invariant is that every number in A[start..b] < pivot and every num-
ber in A[b+ 1..i — 1] > pivot. Everything in Afi..end] is unknown.

Partition(A, start, end)

Input: an array A
Input: integers start and end
Output: The pivot index
b = start;
for i=start+1 to end do
if A[i] < pivot then
b =b+1;
swap(A, i, b);
end
end
swap(A, start, b);
return b;

9.2 Quicksort

The idea is to run partition on the array and then recursively sort both subar-
rays.

Quicksort(A, start, end)

Input: an array A
Input: integers start and end
if end < start then

‘ return;
end
p = partition(A, start, end);
Quicksort(A, start, p-1);
Quicksort(A, p+1, end);



9.3 Analysis

The worse case for quicksort is when the array is already sorted or reverse
sorted. The pivot will always not give us a good split and we will wind up with
a running time of 1+2+3+-+n = ©(n?). However, if we pick a random pivot,
then the running time will be O(nlogn) with high probability.

10 Selection

10.1 Finding the max or the min

The straightforward algorithm for finding the min or the max is the following:

Min(A, n)

Input: an array A
Input: an integer n, the length of A
Output: The minimum of A
min = A[l];
for i=2 to n do

if A[i] < min then

| min = Ai];

end
end
return min;

This takes n-1 comparisons in the worst case. Max is similar.

10.2 Simultaneous max and min

If we want to find the max and min at the same time, we could do it in n-1 +
n-1 = 2n-2 comparisons. Or we can find them simultaneously with the following

recursive algorithm.
Min-And-Max(A, start, end)

10



Input: an array A

Input: integers start and end
Output: An ordered pair (min, max)
if end — start <1 then

if A[start] < Alend] then
| return (Afstart], Alend]);
end
else
| return (Alend], Alstart]);
end
end

mid = | sterirend |,
(minLeft, maxLeft) = Min-And-Max(A, start, mid);
(minRight, maxRight) = Min-And-Max(A, mid+1, end);
min = minLeft;
max = maxLeft;
if minRight < min then
‘ min = minRight;
end
if maxzRight > max then
‘ max = maxRight;
end
return (min, max);

10.2.1 Analysis

How long does this take?
It obeys the occurrence: T'(n) =27 (n/2) + 1, T(2) = 2.

T(n)=2T(2)+1

=>=4T(3)+2+1

==8T(3)+4+2+1

==2"T"(H)+ 142+ +2k1

Let r =2=>2"=2 and 142+ .- 42" 1=2F—1=2_1
==25+5— 1

This has solution T'(n) = 22 — 1.

10.3 Finding the Kth smallest

We can find the kth smallest number in an array as follows: Take the array A and
turn it into a min heap. Then pop the heap k times. This takes ©(n + klogn).
If k is small, this is a good algorithm, but if £ = ©(n), this is no longer all that
good.

11



A better algorithm is based on partition. Call partition using the pivot. Once
that happens, if k < pivotindex then you look in the left subarray. Otherwise,
you look in the right subarray. This takes ©(n) time with high probability.

11 Graphs

11.1 Definitions

Definition: A Graph is a pair G = (V, E) where V is a set of vertices and E
is a set of edges. If G is a directed graph, then each e € F is an ordered pair
(u,v) representing that u and v are related. If G is undirected, then each e € E
is an unordered pair, {u,v}. (Abuse of notation: most books and papers use
(u,v) even for undirected graphs, but this is technically not true.)

Definition: A path is a sequence of vertices (vg, v1,va, - ,v). The length
of a path is the number of edges in the path.

Definition: A cycle is a path that starts and ends at the same vertex.
A simple cycle is a cycle that doesn’t repeat vertices. Definition: A graph
is connected if every vertex is reachable from every other vertex. Connected
components of a graph are parts of the graph in which every vertex is reachable
from every other vertex.

Definition: The outdegree of a vertex v is the number of edges that leave v.
The indegree of a vertex v is the number of edges that enter v. In an undirected
graph, we just talk about degree.

Definition: a forest is an acyclic, undirected graph. A tree is an acyclic,
undirected, connected graph. A directed, acyclic graph is called a "dag.”

11.2 BFS

Input: the adjacency lists of a graph G = (V, E)
Let visited be a new array;
for ve V do
| visited[v] = false;

end
forveV do

if not visitedfv] then

| BFS-Visit(G, v);

end

end

12



Input: the adjacency lists of a graph G = (V, E)
Input: The source vertex v
Input: The visited array
Let Q = 0;
;// Q is the empty queue
Q.enqueue(v);
visited[v] = true;
visit(v);
while Q # () do
w = Q.dequeue();
for u € Adjjw] do
if not visitedfu] then
Q.enqueue(u);
visited[u] = true;
visit(u);
end
end

end
Time Complexity: ©(V + E).

11.3 DFS

Input: the adjacency lists of a graph G = (V, E)
Let visited be a new array;
for v € V do
| visited[v] = false;

end
for v € V do

if not visited[v] then

| DFS-Visit(G, v);

end

end

Input: the adjacency lists of a graph G = (V, E)
Input: The source vertex v
Input: The visited array
visited[v] = true;
visit(v);
for u € Adj[v] do

if not visitedfu] then

‘ DFS-Visit(G, u, visited);

end

end

13



11.4 Dijkstra-Prim

Input: the adjacency lists of a graph G = (V, E, w)
Input: s, the source vertex
Let F =V;
;// F is the fringe
Let parent[|V]] be a new array;
Let H be a min heap;
Let T = (;
:// T is the MST
Let dist[|V|] be a new array;
; // dist[i] is the smallest edge to add vertex i into the
tree
forveV do
H.insert((v, 00));
parent[v] = null;
dist[v] = oo;
end
H.decreaseKey(s, 0);
for v € Adj[s| do
H.decreaseKey(v, w(s, v));
parent[v] = s;
dist[v] = w(u,v);
end
while F' # () do
u = H.removeMin();
T =T U {parent[u], u, w(u, parent(u)) };
for v € Adj[u] and v € T do
if w(u,v) < dist[v] then
H.decreaseKey(v, w(u,v));
dist[v] = w(u,v);
end
end
F=F\{u};
end

N.B.: You need to remember where in the heap each v is so that you can
implement decreaseKey() in O(log V) time.

14



11.5 Kruskal

Input: the adjacency lists of a graph G = (V, E, w)
Input: s, the source vertex
T = 0;
Let Edges||E|] be a new array;
Copy all edges into the array;
sort(Edges);
for e € Edges do
if adding e doesn’t create a cycle then
| T=TuU{e};
end
end

How do you decide if adding e creates a cycle? Use a Union-Find D.S. =
Disjoint sets D.S.

Make-Set(n):
Create an array parent[n]. set parent[i] = null for all 1 <i<mn

Union(x, y): attach the smaller of the two trees to the larger.
make the root of the larger tree the representative.

Find(x): return the representative of x, but when you do it, bring up all of
the pointers to the root.

12 Dynamic Programming

The idea of dynamic programming is that some problems have recursive struc-
tures, but that the straightforward recursive algorithms take exponential time.
Intuitively, this is because many subproblems get computed many times. There

are two fixes: top-down recursion with memoization and bottom up with a table.
I’ll demonstrate both on fibonacci.

12.1 Fibonacci

Recall that the Fibonacci sequence is defined recursively as:

ﬁb<n>={1‘ . n=2
fib(n — 1) + fib(n — 2) otherwise

One could program the naive algorithm as follows:

15



fib(n):
Input: an integer n
Output: the n*® fibonacci number
if n <2 then
‘ return 1;
end
else
| return fib(n-1) + fib(n-2);
end
It’s easy to see why this will take exponential time. In running this algorithm,
we will call fib(3) many times for large n.

The running time is ©(®™), where ® = 1+T\/g = Bad!

12.1.1 Dynamic programming solution

The solution is either to memoize or to solve this bottom up. The bottom up
is as follows:
fib(n):
Input: an integer n
Output: the n*® fibonacci number
Let results[l..n] be a new array ;
results[1] = 1;
results[2] = 1;
for i=3 to n do
| resultsi] = resultsi-1] + resultsi-2];
end
return results[n];

This takes ©(n) time. This is a far cry for exponential. (Technically, you
can find fibonacci numbers in ©(logn) time.)

12.2 Binomial Coefficients

Suppose we wanted to compute the number of ways to choose r objects from a
group of n, denoted (:f) You can theoretically do this with factorials, but this
is unrealistic since the size of the numbers grow huge very quickly and cannot
be stored in a word in the computer. So let’s leverage a recurrence:

(-0«
()= ()

Conceptually, this means that you have 2 choices: you can choose the first
object, or not. If you choose it, you need to pick » — 1 more objects out of the

16



remaining n — 1. If you choose to leave it alone, you still need to pick r from
n—1.

Proof: Look at the class notes!! It’s way too annoying to type up.

If we implement this algorithm directly, we will get the same horrible be-
havior as fibonacci.

12.2.1 Memoization

We can use the recursive algorithm above and add a hash table to remember
while still recursing. Example:
binom(n,r):

Input: integers n and r

Output: (:f)

Let map be a new, empty hash map;
return binom(n,r,map);

binom(n, r, map):

Input: integers n and r
Input: a hash map called map
Qutput: (’TL)
It answer;
if map.containsKey((n,r)) then
| return map.get((n,r));
end
else if r=0 or r=n then
| ans = 1;
end
else
‘ ans = binom(n-1, -1, map) + binom(n-1, r, map);
end
map.put((n,r), ans);
return ans;

12.2.2 Dynamic programming

Let’s instead build a table:
binom(n. r)

17



Input: integers n and r

Output: (’TL)

Let binom[0..n][0..r] be a new 2D array;
for i = 0 to n do

for j = 0 to min{i, r} do

if j= 0 or j = i then
‘ binoml[i][j] = 1;
end
else
| binomli][j] = binom([i-1][j-1] + binoml[i-1][j];
end
end
end

return binom[n][r];

How long does this take? ©(nr) ~ ©(n?). This is much better than expo-
nential.

12.3 Edit Distance

Given 2 strings S[1..n] and T[l..m|, find the number of moves necessary to
transform S into T. A move is an insertion, deletion, or a switch of characters.
Naive recursive algorithm The naive recursive algorithm is to notice that we
can look at all prefixes of S and T, and figure out what to do with the new
character. If the new characters match, don’t do anything, and keep the answer
you used to have. Otherwise, find the minimum of insertion, deletion, and swap,
and add 1.
EditDistance(S, T, n, m)
Input: Strings S and T
Input: integers n and m, denoting the size of the prefixes
Output: the edit distance of S and T
if n =0 then
‘ return m;
end
else if m = 0 then
‘ return n;
end
else if S[n] = T[m] then
| return EditDistance(S, T, n-1, m-1);
end
else
return 1 + min{EditDistance(S,T,m — 1,n —
1), EditDistance(S,T,m,n — 1), Edit Distance(S,T,m — 1,n);
end

This algorithm takes exponential time. To make it efficient, either memoize
or build a table. I'll give you the table version.

18



Dynamic Programming

Input: Strings S and T

Input: integers n and m, the sizes of S and T
Output: the edit distance of S and T
Output: the dist array

Let dist[0..n][0..m] be a new 2D array;

for i=0 to n do

| dist[i, 0] = i;
end

for i=0 to m do
| dist]0, i] = i;
end

for i = 1 to n do
for j = 1 to m do

if S/i] = T[j] then
| dist[i,j] = dist[i-1,j-1];
end
else
‘ dist[i,j] = 1 + min{dist[i — 1,j — 1],dist[i — 1, j],dist[i,j — 1]};
end
end

end
return dist[n,m] and dist;
This takes ©(nm) time.

12.3.1 Backtracking

Given the table, you can find an optimal alignment as follows:
Start with dist[n,m]. Then follow the rules in reverse until you get to
dist[0,0]. This only takes an additional ©(maz{n, m} time.

19



