Ari Mermelstein CISC 3115

Review Sheet for Exam 1

1. Review of 1115
a. Arrays
b. Methods
c. Passing arrays to methods
d. Logical length vs. allocated length of an array
e. Strings and String manipulation
2. Recursion
a. Review the examples we did in class
b. Be able to trace through a recursion and predict the output
c. Be able to write a simple recursive method
3. Command Line Arguments
a. To know how to input command line arguments to a program
b. To know how the operating system interprets these arguments
c. To be able to convert the command line arguments from String to
whatever type the program understands them to be (e.g.

Integer.parselnt(), Double.parseDouble())



d. To be able to write a short program that accepts command line
arguments
4. UNIX
a. To be able to write a command to:
1. Create a file
i1. Create a directory
1ii. Remove a file
iv. Rename a file
v. Move a file from one directory to another
vi. Copy a file
vii. List all files and directories
viii. Compile a java program
1x. Execute a Java program
5. Exceptions and Exception handling
a. To be able to write a method that throws an Exception
b. To able to write a method that prepares to respond to an Exception
being thrown (i.e. try/ catch)
6. Classes
a. Writing Classes

1. Access specifiers (public vs. private)



11.

1il.

1v.

V.

vi.

Vil.

Viil.

The difference between public and private methods and
instance variables

Instance variables

Accessors/getters

Mutators/setters

Constructors

Overridden methods for equals() and toString()

How to write a class with all of the above features

b. The difference between primitive types and reference types:

1.

11.

111.

Where is the data stored?
What happens when you assign one primitive variable to
another? One reference to another?

Aliasing

c. The Object class

1.

11.

1il.

1v.

Where do all reference types inherit from by default?
What methods does the Object class have?

1. equals()

2. toString()
What do these methods do be default?

How to change their default behavior



v. The difference between overloading and overriding.



