CISC 3142 Ari Mermelstein

Homework #3:

Overview

In this assignment, you will be asked to implement a Bank simulation program.
In this simulation, you will have classes: Currency, Account, CD,

Checking, Savings and Customer.

| will provide headers and descriptions for all of the member functions that you will
need to implement.

The Currency class will have one member variable: the number of cents. A
Currency object will be used to keep track of the money in a bank account.

methods:

Currency () ;

This will initialize the number of cents to O.

Currency (int cents)

This will initialize the number of cents to the specified value. (You can write both constructors as
one constructor if you want. How?)

int getValue ()

This will return the number of cents in the account.

Currency operator + (const Currencyé& rhs)

Currency operator - (const Currencyé& rhs)



These will add / subtract two Currency objects together.
(You can also do these as 2 parameter nonmember friend functions)

Currencyé& operator += (const Currencyé& rhs);
Currency& operator —-= (const Currencyé& rhs);

Update functions for Currency objects

ostream& operator << (ostream& os, const Currencyé& rhs);

This will print a Currency object with the amount of money in dollars.

The Account class will have the following member variables: A Currency object that will store
the balance of the account. The Account class will be an abstract class that will be subclassed by

Checking, Savings, and CD.

functions:

Account (Currency initialDeposit)

This creates an account with an initial deposit of “initAmount”

virtual void withdraw(const Currency& money)=0;

Withdraws “money” cents from the account. This will be an abstract method that will need to be
overridden.

virtual void deposit (const Currencyé

money)=0;

Deposits “money” cents into the account. This will be an abstract method that will need to be
overridden.



Virtual Currency getBalance()=0;

returns the balance in the account. This will be a purely virtual method because it must take into
account the interest rate if one exists (oh! overloading in English is fun also! ;) )

Now, The Checking, Savings, and CD classes will be subclasses of Account.

A Savings account has an interest rate that gets applied when the balance is checked (let’s
assume that the balance represents the amount after an interest period). You can withdraw and
deposit money from a savings account.

Savings (const Currencyé& initial, double

rate);
void deposit (const Currencyé& amount);
void withdraw (const Currencyé& amount) ;

friend ostream& operator<<(ostreamé& os,

const Savingsé& savings);

A Checking account doesn’t have an interest rate (let’s say).

Checking (const Currencyé& initial);
void deposit (const Currencyé& amount) ;
void withdraw (const Currencyé& amount) ;

friend ostream& operator<<(ostreamé& os,

const Checkingé& checking);



A CD doesn’t allow deposit or withdrawal. You open the account with an initial deposit and
then the money cannot be withdrawn until a certain amount if time does past An exception
should be thrown.

CD(const Currencyé& initial);
void deposit (const Currency& amount);
void withdraw (const Currencyé& amount);

friend ostream& operator<<(ostreamé& os,

const CD& cd);

The Customer class will have 4 member variables: the first name of the customer, the last
name of the customer, how many accounts the customer has actually opened, and a vector of
Accounts. (More likely, a vector of Account®). (Or you can use dynamic arrays)

Methods:

Customer (const stringé& first, const Stringé& last);

void addAccount (const Accounté& account);

This method will allow the Customer to open an account.

string getFirstName () ;

string getLastName () ;

Accessor methods for the Customer class.



void deposit (const Currencyé& money, const string& type);
void withdraw (const Currencyé& money, const stringé& type);

public void balance(const stringé& type);

These functions will allow the Customer to withdraw or deposit money from an account. You
can assume by protocol that each customer can only have at most one account of each type. Each
function should throw an exception if the account doesn’t exist or the operation cannot be
performed. The withdraw function should throw an exception if the balance would be below 0.
Make sure that only one account per type per customer is enforced.

You should create your own custom exceptions for the different situations.

You will also have to create a main program that does the following:

1. Create an array of Customers called bank.
2. Create a menu that gives the user the following options:

O. Become a new customer of the bank. If this is chosen, ask the user for their name, and
register them as a customer in the bank. If they are already a customer, print a
message that they already have an account.

B. Allows the user to search for the account balance of a particular account. You should
prompt the user for their name and account type.

W. Allows the user to withdraw money from a particular account. You should prompt
the user for their name and account type. Complain to the user if their account would
be overdrawn.

D. Allows the user to deposit money into a particular account. You should prompt the
user for their name and account type.
C. Open an account for a user.
Q. Exit the program

Each of the above choices should be implemented in a method. You may wish to make
this into a class also for extra credit!

What to submit:



The .java files for all of the classes and the main program and output.






