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Abstract

In contrast to the usual approach to simulating quantum computing algorithms as a
series of operations to be performed on a set of “qubits,” we have used the Haskell
programming language to implement Grover’s fast search algorithm as a composition
of functional transformations applied, as a final step, to a set of qubits (a “quantum
register”). In this approach, which has been (at least implicitly) suggested in the
literature, but, as far as we have been able to determine, not been realized in a working
program, the composition is constructed by means of common matrix manipulations
and takes advantage of the associativity of matrix operations to eliminate complicated
computations usually associated with simulating quantum computations. We present
the crucial code sections, along with actual program results.

We discuss the implications of our approach in the areas of quantum program simu-
lation, algorithm analysis, algorithm construction, and construction of languages for
quantum programming.

1 INTRODUCTION

1.1 Quantum Computing

While 1t 1s beyond the scope of this paper to provide a detailed introduction to
quantum computing,! we begin by reviewing the specific quantum properties that
are crucial to understanding Grover’s fast search algorithm [6]. We then present
the algorithm itself, along with central portions of the code, and conclude with a
discussion of some of the implications of the approach we have taken to simulate a
quantum computation. A detailed example of a search with Grover’s algorithm is
given In the appendix.

Consider, then, as a starting point, a flip-flop representing a single binary digit
in the classical world. Given the value of the bit, we can predict with certainty
how the bit will change when a pulse is applied to the flip-flop. In effect, provided
the flip-flop is not broken, we can always know precisely what the value of the
represented bit is without examining it. In the quantum world, however, things are
fuzzy: A so-called quantum flip-flop can be put in a state in which the only way to
determine its state is to examine its output. The output of a quantum flip-flop will
be zero with some probability x, and one with probability 1 —x. This measurement
then actually changes the state of the quantum flip-flop to match the result of the
measurement. Thus, any further measurement will yield the same result as the first.

'The interested reader is referred to [9], [7]. and [1]
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One way to deal with the behavior of our so-called quantum flip-flop is to adopt
the counter-intuitive idea that it is in both the zero and one states at the same time.
Another approach, which is favored by the authors, is simply to consider the state
of the quantum flip-flop to be undetermined until it is measured, at which point
the value it represents will be determined by some probability distribution. In any
case, regardless of the viewpoint adopted, if a measurable object can present any
of two or more different states when measured, we say it is in a superposition of
states; an entity that can be placed into a superposition of only two possible states
is known as a quantum bit, or qubit.

Now, a second quantum property that we need is the fact that we can operate on
all of a set of states simultaneously by applying a linear transformation® to the su-
perposition of all states in the set. This transformation can be performed by matrix
multiplication. It turns out, however, that we also need a way to combine several
states into one’; this is achieved by using a tensor product. It is the exponential
increase in the dimensions of the resulting vector spaces that provides quantum
computations with their famous parallelism.

Finally, the last property that we need is that matrix products are associa-
tive.* Indeed, the difference between our simulation of Grover’s algorithm and
other simulations and descriptions we have been able to locate in the literature
[11, 12, 5, 8, 10] is that we associate to the left, while conventional simulations
associate to the right. This radically simplifies the code and the approach. For
example, we perform a series of operations A, B, C on a state § as

((CB)A)S,

rather than
(C(B(AS))).

As one example of the difficulties encountered by the conventional approach,
consider the quantum simulator (in the Haskell language) written by Jan Skibinski
[11, 12]. In this simulator, operations are repeatedly applied to a set of quantum
bits in a superposed state. Almost every such operation generates a new, larger ex-
pression representing the new superposed state, a situation that the simulator deals
with by building a tree of expressions involving the original superposed states; we
found this approach difficult to apply to a real problem.

A second approach is to break down each linear transformation to be applied to
a set of qubits to primitives like “quantum AND” and “quantum OR,” effectively
constructing a special purpose machine for the computation.” It strikes us that this
approach is akin to requiring an engineer faced with a complicated computation

to write his program in terms of NAND gates, an approach that has long been
abandoned for complicated classical computations.

2Linearity is required by the physics on which quantum computation is based.

3For example, to combine several of our so-called quantum flip-flops into a single quantum
register.

4This is not a quantum property, but a matrix property.

This is very similar to the way analog computers were once used.
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To be sure, there are other quantum properties that are important for other
algorithms, such as the fact that the values of the probabilities involved are actually
the squares of complex numbers, which has very interesting consequences as minus
signs come and go when transformations are iterated. Grover’s algorithm, however
does not require reference to them, though the interested reader is referred to such
texts as |9] and [7] for the additional details.

1.2 Grover’s Algorithm

Grover’s algorithm solves a relatively simple problem: Given a function f and a
value y in the range of f, find an x such that f(x) = y. In the absence of further
information about the properties of f, a classical approach to solving this problem
requires us to do a linear search through all the members of the domain, trying each
one to find out if 1t is the one sought, i.e., the problem is one of linear search, which
has computational complexity O (N).

Grover, however, uses quantum effects (i.e., quantum computation) to apply
the function to all of the values in its domain at the same time, and then uses a
clever device to extract the answer sought from the superposition that is obtained:
Through a series of iterations of a process we call diffusion (details below), he
increases the probability of the value we seek at the expense of the probabilities
of the remaining values, with the maximum probability being reached after /N
iterations [6]. At this point, we can determine which of the values has been selected
oy simply examining the probabilities, and selecting the value with the maximum
probability (which we find is quite clearly distinguished from the others, at least
for small register sizes).°

[t should be clear that were this algorithm to be implemented with real quantum
hardware, its computational complexity would be O (\/ﬁ) which Grover proved
[6] to be optimal in its class.

2 HASKELL IMPLEMENTATION

2.1 State Vectors

A qubit can be effectively represented by a two-dimensional vector in a complex
vector space. This vector is either in state 0, 1, or some superposition of the two.
We are not concerned with individual qubits, however; we are concerned only with
having linear representations of quantum registers. Since a quantum register can
be represented by the tensor product of the qubits it is composed of, an n qubit
register is represented by a 2"-dimensional vector in a complex vector space. The
qubits are abstracted out, as their simulation is not necessary. This implementation
uses Haskell arrays of complex values to store such state vectors.

°This is not the case in the real quantum world. It only works here because we can look at the
individual probabilities of the resulting vector collapsing into any particular state if it were
measured.
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2.2 Linear Transformations

All linear transformations in an n-dimensional vector space can be represented by
7 X n matrices. Since quantum operations are essentially just linear transforma-
tions, any quantum operation on a register containing # qubits can be represented
by a 2" X 2" matrix. There is no need to think about quantum gate operations
or what is happening to the qubits at the hardware level. This implementation of

Grover’s algorithm uses Haskell arrays to represent all linear transformation matri-
ces.

3 REQUIREMENTS FOR GROVER’S ALGORITHM

The steps required in Grover’s algorithm are as follows [6]:

1. Place the quantum register in an equal superposition of all possible states.

2. Repeat v/N times:

(a) Apply the selective phase inversion transform to the register.

(b) Apply the inversion-about-average transformation to the register.

3. Measure the resulting state.

3.1 Walsh-Hadamard Transform

The first step in Grover’s Algorithm is to initialize a state vector to an equal super-
position of all possible states. This is easily achieved by using the Walsh-Hadamard
transformation. The matrix representation of the Hadamard transform that operates
on a single qubit is as follows:

H=—-

V2 |

For an n qubit system, the Walsh-Hadamard transform is represented by the

matrix resulting from the tensor product of » Hadamard transformations. For ex-
ample, for a 2 qubit system

1 -1

1 1 1 T
1 L I o= Dt 1 |11 -1 1 -1
w2 ﬁ'"l—li(@ﬁ'*l —1 | 2 1 -1 -1
—1 =1 1
and in general
Wi = H
W, = W,.1®H.

The hadamard function takes as its input a number of qubits and returns

an array containing the matrix representation of the appropriate Walsh-Hadamard
transform.
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hadamard :: (RealFloat a) =>
Int -» Array (Int,Int) a
LigtArray (00,00, £1.,7))
[ risart 21k, (I7isart 2))
)

Clditsemst 2% ). =1 {=sget 2
hadamard n = hadamard 1 “tensor’ hadamard {(n-1)

hadamard

Il

3.2 Selective Phase Rotation

The selective phase rotation is the real meat of Grover’s algorithm. Consider the

classical function
1 x=¢g
fle)= { 0 otherwise

When we are given a quantum function f : |x,b) — |x,b @ f(x)),” the selective
phase rotation rotates the phase of the portion of the state vector where x = ¢ by
n radians. This is equivalent to inverting the phase wherever x = ¢ (which is why
this operation is sometimes instead called the selective phase inversion).

Applying this function on a register that is in an equal superposition of all
possible states, choosing b = H®|1),° yields a state where the phase of all x where
x = c is inverted and & is unchanged [9]. Let us call this resulting state |£,b).
In order to continue with this implementation of Grover’s algorithm, we need to
somehow obtain a representation of the state |).

Consider what we obtain when we apply the transformation 7 < H on |£,b):

I®H)z,b) =|2,1) = [£) ®[1).

All we need now in order to represent |X) is a way to do what we call “tensor
division” by |1). We have a function that does just this, and it is used in the
invertPhase function which takes a quantum function P: |x,5) — |x,b @ f(x))
and a state x and returns the state [X) as defined above.

—— —— i — — — —— —— i i, e, B SRS SRS e S S e e e e e o — — — — o s ot i —

-- Selective phase inversion. Given a guantum function p, - -
-- apply the selective phase inversion matrix on Xx. - -

—— — e S RS RS SR e S e S e e . . o e S S . o i o o o). T inan

invertphase :: (RealFlcat a) =>
Arrdy (Int,Int) a -3> Array (Int,Int) &
-> Array {(Int,Int) a

invertphase x p = ixmap ((0,0), (2°n=1,0))
(XS0 = (%147 .00 (deit)
where
deit = ((identmat n) ‘tensor’ (hadamard 1))

7

s) is the Dirac ket notation for the vector representation of the quantum state s. See [9] for
more details. Also, @ represents exclusive-OR.
®That is, the tensor product of the Hadamard transform and a qubit in the state 1.
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‘matMult’/ (p ‘matMult’ (x ‘tensor’
( (hadamard 1) “‘matMult’ (one))))

il L) Hiad)) = DBounds x
n = floor (logBase 2 (fromIntegral (wi+1)))

3.3 Inversion About the Average

The inversion-about-average transformation (what Grover also calls the diffusion
transform) [6] does exactly what one would think: it inverts each component of a
vector v about the average of all the components of V. To create such a transfor-
mation, we first look at the transformation A such that AV =", where each of the
components of V' is the average of all the components of V: A;; = # where N 1s the

J
number of components of v. For example, in a 4-dimensional vector space,

1M 14 14 14
14 1 1/4 114
1/4 1/4 1/4 1/4
14 1/ T e

Now we want to invert about the average. We want a transformation D such
that DV = V', where V' is the result of inverting each of the components of V about
the average of all of them. Therefore, V. must equal (AV); — V; + (AV); for all i. It
now follows that D = —7 -+ 2A, or in other words,

D, — -~1+% = j
S i3
Haskell is very well suited for generating such a matrix. The diffusion

function takes as its input a number of qubits, and returns an array containing the
matrix representation of the appropriate inversion-about-average transformation.

S s o e —— S S e e D — — . it i W —— . G S R S . . — S g w— o — e — — —

-- This function generates the diffusion matrix for an n -
-- gubit register - -

— — TR OERIER R RS OSSO/ T T T T D W W G " ——— — S | . — — il i v— — — ———— — — —— | —— —

diffusion :: (RealFloat a) =>
Int = &rray (Int,Int) a
diffusiorn n = listdrray ((0,0) .12 "0=1,2%1n-1))
map ( ((+)(2/(2"n))) . negate)
(

elems (identmat n)))

4 IMPLICATIONS

It is not our code, or even our implementation, to which we wish to call attention,’
but the fact that this code provides a clear, concise and transparent description
of the algorithm, unlike the commonly used melange of Dirac bra-kets, matrix
manipulations, and (sometimes convoluted) diagrams and natural language.

?In fact, both are quite pedestrian.
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Indeed, we submit that development in the field of quantum computation has
long been hobbled by a lack of suitable language, and, further, that a lazy functional
language (and Haskell in particular) provides the field of quantum computation not
only with a language that, because its laziness mimics the behavior of quantum
processes, 1s particularly appropriate for programming, but a language that is ap-
propriate for presentation, study, and analysis of quantum computation. In fact, we
submit that Haskell (with appropriate and easily built extensions) offers to quan-
tum computing the same service to understanding and analysis as Aho, Hopcroft,
and Ullman’s “Pidgin ALGOL” [2], Cormen, Leiserson, Rivest, and Stein’s un-
named pseudo-code [3], and the host of other invented pseudo-code and actually
implemented languages (e.g., Algol-60) that have unarguably been instrumental in
communicating, teaching, and analyzing classical algorithms and computational
processes.

Now, as important as the availability of an appropriate language may be to
furthering the study of a subject, the fact that lazy functional languages appear to
provide such a language for quantum computation leads to what we surmise is a
potentially significant conjecture: It would appear from the structure of such lan-
guages and what can be said in them that all quantum programs can be modeled
successfully by nondeterministic probabilistic automata, a conjecture that is often
implied in the literature,'! but, as far as we have been able to determine, has never
been explicitly stated.!® If this conjecture is in fact correct, it would have a signifi-
cant corollary: Rather than being a new paradigm (as was functional programming
when first invented, in comparison with procedural programming), quantum com-
puting 1s actually a metaphor for nondeterministic probabilistic automata, about
which we know a great deal. In turn, this would explain why the great promise of
quantum computing has been so poorly met. In fact, what might be doable with
quantum computing has in large part actually already been done!

On the other hand, identification of quantum computing as a metaphor does
not in any way reduce its value or utility. Metaphors are powerful tools for illumi-
nation and explication. Indeed, a well constructed metaphor is at once instructive,
illuminative, and profound, often providing insight, motivation, and direction for
further study. However, as effective and moving as metaphors might be (see, for
example Donne’s poetry or Shakespeare’s plays), we think it wisest to adopt Pros-
pero’s knowing parental smile as he hears Miranda explode into adulthood. It is
not, he knows perfectly well, a “brave new world,” but it is a world that can pro-
voke wonder and delight. And we think that quantum computing will lead us, step
by step, to discoveries that will provide us with the same sort of excitement and

' And, we can add, if there were at present a suitable alternative to lazy functional languages for
clear, concise, and transparent description of quantum algorithms, our thoughts on the matter would
probably be of little significance.

" See, for example, repeated use of Turing machines for the purpose of analyzing the
computational complexity of quantum computation [1, 4]

12 Although we learned of some unpublished work based on this conjecture, we have no details
yet [14].
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satisfaction to be had from discoveries that advance the state of our art.

5 THE NEW WORLD, THROUGH A GLASS, DARKLY

At the present time, in order to test our conjectures, we plan to implement several
quantum algorithms. Assuming that our conjectures hold true, and we have no
reason to believe they won’t, we think that the next step is to define a vocabulary
for a quantum-computation description language that is adequate to the task: A
vocabulary that is merely universal (and several are known, e.g. [1]) is not suf-
ficient, in fact, since that would be much the equivalent of offering an engineer
a programming vocabulary consisting of the single operation NAND. To be sure,
NAND would provide, with enough effort at construction of more complex opera-
tions, all that is necessary, but it most certainly would not be particularly practical
for programming any useful engineering computation. In a word, we need a set of
transforms that are not merely universal, but also convenient, and in some sense
complete, as opposed to simply universal.

We know, for example, that a Walsh-Hadamard operation is certainly neces-
sary, along with time- and space-efficient matrix and tensor operations. But what
else do we need for "convenience”? Shall we include the diffusion operation, or
1s that too specific to Grover’s algorithm and its offspring? How about a quan-
tum Fourier transform? Shall we include the elementary quantum AND and OR,
or are these too elementary to be relegated to implementation of a more powerful
language? And how about the “tensor division” operation that we invented for our
implementation of Grover’s algorithm?

Questions like those above, we think, open an extended area of inquiry that we
think will ultimately be fruitful, not only for simulation of quantum computations,
but for programming real quantum computers when and if they finally become
available. And as long as we are limited to quantum simulations, we think exten-
sion of the Haskell language to include a quantum programming language by way

of a library of extensions (functions) provides an ideal vehicle for the task we have
set out to perform.
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A SAMPLE RUN

In this example, our program is given a function that operates on an 8 qubit register.
The function’s value is 1 when its argument is 243, and 0 otherwise. The following
is the result of running our implementation of Grover’s algorithm on this function.
The output 1s a Haskell array with the index representing a state and the value
representing the square root of the probability that the register is in that state. As
expected, the probability that the register is in state 243 is very high compared to
all the others, and is in fact very close to 1.

atray (L0;00; C255,0)) [

({0,0),-2.2526511019408314e-2),
(£7,0),-2.2526511019408314e-2) ;
CEZ B =B ?52651101940831& 2o

(4,0 ,—2.25265110194082939+2},
(5,0) ,-2.2526511012408293e-2) ,
(6,0),-2.25265110194082%93e-2) ,
(7,0),-2.2526511019408293e-2) ,

(8,0),-2.2526511019408293e-2) ,
(
(
(

,~2.25265110194D8314e—2

f

(

f

E

(

E

(

(

( )

( ) 1 -2.2526511019408314e-2
((12,0),-2.2526511019408314e-2
{ )
f )
{

(

(

(

(

(

{

f

F

, —2.24526511019408314e-2

£

, —2.2526511019408374e-2

)

)

)

)
)
(15,0),-2.2526511019408304e-2) ,
16,0),-2.2526511019408307e-2) ,
17,0),-2.25265110194083186-2) ,

)

)

)

)

{
{
(18,0),-2.2526511019408318e-2
(19,0),-2.25265110194083718e-2
{
(

/

f

20,0),-2.252651101940831718e-2
21,0),-2.2526511019408328e-2

f

f

233,0) ,-2.25265110198408377e-2) ,
y—2.2026511019408377e-2),
=2« 292051 101 9490837 3e~2) ;
y—2.252657101940838e-2) ,
¢ —2+6202651101 940837 78-2) ,
r —2+202651101940837Te-2) ,
, =2.25265711019408377e-2)

)

r

y —2.2526511019408384e-2

/

)

)

)

)

)

)

)

) ,-2.252651101940838e-2) ,
242,0),-2.2526511019408384e-2) ,;

)

)

)

)

)

)

)

243,0),0.9330604786558996) ,

244,0),-2.252651101940838e-2),
245,0) ,-2.2526511019408377e-2) ,
246,0),-2.2526511019408373e-2) ,
247,0),-2.2526511019408363e-2),
248,0),-2.2526511019408366e-2) ,

, —2.2526511019408366e-2) ,
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({250,0),-2.252651101940836e-2},
(X257 ,0 ,—2.2526511019408356e—2J -

((252,0),-2.252651101940836e-2) ,
({253,0) 2.2526511019408352@—2),
((254, D} 2.252651101940835e-2) ,
((255,0),-2.252651101940835e-2) ]
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