
Chapter 3.1
Teams and Processes

Being a programmer.

 2

Programming Teams
 Up into the 1990's, even for very large games,

the programmers developed the whole game (art
and sounds too!)

 Shift from technical improvements to game-play
 Now for the most part, programmers write code

to support designers and artists (who are the real
content creators).

 Note: Mobile games are the exception.

 3

Programming Areas
 Game code

 Anything related directly to the game: camera, AI,
displays, messaging system,

 Game engine
 Any code that can be reused between different

games (classes and libraries). Isolate game from the
hardware allows focus on program logic

 Tools
 In house tools (level editors, visual sound effects)
 Plug-ins for off-the-shelf tools (Maya, 3ds max,

Photoshop).

 4

Team Organization
 Programmers often have a background in

Computer Science or sciences
 They usually specialize in some area (AI,

graphics, networking) but must know about
all other areas.

 Teams usually have a lead programmer.
 They sometimes have a project lead for

each of the major areas. (AI, graphics)
 “Technical”, “game-play” programmers are

tool specialists.

 5

Skills and Personalities

 Successful teams have a mix of personalities
and skills:
 Experience vs. new ideas
 Methodical vs. visionaryqwe

 The ability for members of a team to work
together is extremely important.

 Not unheard of (in business as well as games)
to have “personality mapping” done.

 6

Methodologies
 A methodology describes the procedures

followed during development to create a
game.

 Every company has a methodology (way of
doing things), even if they don't explicitly
think about it.

 With billions of dollars at stake, large
companies have formally defined
methodologies.

 7

Methodologies: Code and Fix
 Unfortunately very common
 Little or no planning, reacting to events
 Poor quality, unreliability of finished product,

cancellations (Duke Nukem)
 “Crunch time” and “death spiral” normal
 “Flying by the seat of pants” OK, for small

projects but dangerous with years long $$.
 “Stupid Lazy”

 8

Methodologies: Waterfall
 Very well-defined steps in development
 Lots of planning ahead of time
 Great for creating a detailed milestone schedule
 Good for “movie games” and other end to end

defined projects.
 Doesn't react well to changes
 'Exploratory' game development is too

unpredictable for this approach

 9

Methodologies: Iterative
 Multiple development cycles during a

single project
 Each delivering a new set of functionality

 The game could ship at any moment
 Allows for planning but also for changes
 Allow for effective team allocation, team

planning.

 10

Methodologies: Agile Methods
 Deal with the unexpected
 Very short iterations and goals

 2-3 weeks
 Iterate based on feedback of what was learned

so far, open too last minute changes.
 Very good visibility of state of game
 Difficult for publishers or even developers to

adopt because it's relatively new
 In use by “crash teams” at large studios.

 11

Common Practices
 Version Control Systems (VCS)

 Also called Revision Control (RCS) or Source
Code Management (SCM)

 Database with all the files and history.
 Only way to work properly with a team.
 Centralized location, “checkout”
 History for each file helps manage bugs.
 Branching and merging can be very useful.
 Used for source code as well as game assets.

 12

Common Practices
 Coding standards

 Set of coding rules for the whole team to
follow

 Improves readability and maintainability of
the code

 Easier to work with other people's code
 They vary a lot from place to place

 Get used to different styles
 Sometimes details go to 100's of pages.

 13

Common Practices
 Automated builds

 Dedicated build server builds the game routinely
(nightly) from scratch

 Takes the source code and creates an executable
 Also takes assets (tools, etc.) and builds them into

game-specific format
 Build must never break or there is a problem.
 Build may be part of a “testing”/”QA”/”debugging”

process loop.

 14

Quality

 Code reviews
 Another programmer (or group of

programmers) reads over some code to try to
find problems

 Sometimes done before code is committed to
version control

 Can be beneficial if done correctly
 Requires a specialists eye (continuity experts

in film).

 15

Quality
 Asserts and crashes

 Use asserts any time the game could crash or
something could go very wrong

 An assert is a controlled crash (writes to standard
error)

 Much easier to debug and fix (and turn off)
 Happens right where the problem occurred
 Effective in catching “program errors” not “user

errors”

 16

/* assert example */

#include <stdio.h>

#include <assert.h>

void print_number(int* myInt) {

 assert (myInt!=NULL);

 printf ("%d\n",*myInt); }

int main () {

 int a=10;

 int * b = NULL;

 int * c = NULL;

 b=&a;

 print_number (b);

 print_number (c);

 Return 0; }

 17

Quality
 Unit tests

 With very large code-bases, it's difficult to
make changes without breaking features

 Unit tests make sure nothing changes
 Test very small bits of functionality in

isolation (math library, graphics unit)
 Build them and run them frequently
 Good test harness is essential (CppUnit,

CppUnitLite)

 18

Quality
 Acceptance test (or functional tests)

 High level tests that exercise lots of
functionality (AI, level loading, objectives)

 They usually run the whole game checking
for specific features (scripts conduct the
actual gameplay, PTFB)

 Having them automated means they can run
very frequently (with every build)

 19

Quality
 Bug database

 Keep a list of all bugs, a description, their
status, priority and sometimes programmer

 Team uses it to know what to fix next
 Gives an idea of how far the game is from

shipping
 Doesn't prevent bugs, just helps fix them

more efficiently

 20

Leveraging Existing Code

 A lot of code that games use is the same
 It's a total waste of time to write it over

and over
 Instead, spend your time in what's going

to make your game unique
 Avoid Not Invented Here (NIH)

syndrome!

 21

Leveraging Existing Code
 Reuse code from previous project

 Easier in a large company if you have an
engine and tools group

 Use freeware code and tools
 No support
 Make sure license allows it

 22

Leveraging Existing Code

 Middleware
 Companies provide with components used

in game development
 physics, animation, graphics, etc

 Commercial game engines
 You can license the whole engine and tools

and a single package
 Good if you're doing exactly that type of

game

 23

Platforms
 PCs

 Includes Windows, Linux, and Macs
 Can have very powerful hardware
 Easier to patch and allow for user content
 Need to support a wide range of hardware

and drivers
 Games need to play nice with other

programs and the operating system

 24

Platforms
 Game consoles

 Current generation
 Wii, Xbox 360, PS3

 Fixed set of hardware – never changes
 Usually use custom APIs
 More limited resources (but well defined)
 Currently much better sales than PC games

(although that changes over time)

 25

Platforms
 Handhelds and mobiles

 Limited hardware (although rapidly
improving)

 Programming often done in lower-level
languages (C, C++ or even assembly)

 Much smaller projects, teams, and
budgets

 Emerging market
 Separate lecture

 26

Platforms
 Browser and downloadable games

 Small games – mostly 2D
 Need to be downloaded quickly

(broadband speed question)
 Run on the PC itself (on any browser

usually)

 27

Platforms
 Multi-platform development

 The closer the platforms, the easier the
development

 Use abstraction layers to hide platform-
specific code

 Choice
 Target the minimum common denominator for

platforms (easy, cheap), vs. do the best you can
in each platform (more expensive and time
consuming)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

