
Chapter 3.1
Teams and Processes

Being a programmer.

 2

Programming Teams
 Up into the 1990's, even for very large games,

the programmers developed the whole game (art
and sounds too!)

 Shift from technical improvements to game-play
 Now for the most part, programmers write code

to support designers and artists (who are the real
content creators).

 Note: Mobile games are the exception.

 3

Programming Areas
 Game code

 Anything related directly to the game: camera, AI,
displays, messaging system,

 Game engine
 Any code that can be reused between different

games (classes and libraries). Isolate game from the
hardware allows focus on program logic

 Tools
 In house tools (level editors, visual sound effects)
 Plug-ins for off-the-shelf tools (Maya, 3ds max,

Photoshop).

 4

Team Organization
 Programmers often have a background in

Computer Science or sciences
 They usually specialize in some area (AI,

graphics, networking) but must know about
all other areas.

 Teams usually have a lead programmer.
 They sometimes have a project lead for

each of the major areas. (AI, graphics)
 “Technical”, “game-play” programmers are

tool specialists.

 5

Skills and Personalities

 Successful teams have a mix of personalities
and skills:
 Experience vs. new ideas
 Methodical vs. visionaryqwe

 The ability for members of a team to work
together is extremely important.

 Not unheard of (in business as well as games)
to have “personality mapping” done.

 6

Methodologies
 A methodology describes the procedures

followed during development to create a
game.

 Every company has a methodology (way of
doing things), even if they don't explicitly
think about it.

 With billions of dollars at stake, large
companies have formally defined
methodologies.

 7

Methodologies: Code and Fix
 Unfortunately very common
 Little or no planning, reacting to events
 Poor quality, unreliability of finished product,

cancellations (Duke Nukem)
 “Crunch time” and “death spiral” normal
 “Flying by the seat of pants” OK, for small

projects but dangerous with years long $$.
 “Stupid Lazy”

 8

Methodologies: Waterfall
 Very well-defined steps in development
 Lots of planning ahead of time
 Great for creating a detailed milestone schedule
 Good for “movie games” and other end to end

defined projects.
 Doesn't react well to changes
 'Exploratory' game development is too

unpredictable for this approach

 9

Methodologies: Iterative
 Multiple development cycles during a

single project
 Each delivering a new set of functionality

 The game could ship at any moment
 Allows for planning but also for changes
 Allow for effective team allocation, team

planning.

 10

Methodologies: Agile Methods
 Deal with the unexpected
 Very short iterations and goals

 2-3 weeks
 Iterate based on feedback of what was learned

so far, open too last minute changes.
 Very good visibility of state of game
 Difficult for publishers or even developers to

adopt because it's relatively new
 In use by “crash teams” at large studios.

 11

Common Practices
 Version Control Systems (VCS)

 Also called Revision Control (RCS) or Source
Code Management (SCM)

 Database with all the files and history.
 Only way to work properly with a team.
 Centralized location, “checkout”
 History for each file helps manage bugs.
 Branching and merging can be very useful.
 Used for source code as well as game assets.

 12

Common Practices
 Coding standards

 Set of coding rules for the whole team to
follow

 Improves readability and maintainability of
the code

 Easier to work with other people's code
 They vary a lot from place to place

 Get used to different styles
 Sometimes details go to 100's of pages.

 13

Common Practices
 Automated builds

 Dedicated build server builds the game routinely
(nightly) from scratch

 Takes the source code and creates an executable
 Also takes assets (tools, etc.) and builds them into

game-specific format
 Build must never break or there is a problem.
 Build may be part of a “testing”/”QA”/”debugging”

process loop.

 14

Quality

 Code reviews
 Another programmer (or group of

programmers) reads over some code to try to
find problems

 Sometimes done before code is committed to
version control

 Can be beneficial if done correctly
 Requires a specialists eye (continuity experts

in film).

 15

Quality
 Asserts and crashes

 Use asserts any time the game could crash or
something could go very wrong

 An assert is a controlled crash (writes to standard
error)

 Much easier to debug and fix (and turn off)
 Happens right where the problem occurred
 Effective in catching “program errors” not “user

errors”

 16

/* assert example */

#include <stdio.h>

#include <assert.h>

void print_number(int* myInt) {

 assert (myInt!=NULL);

 printf ("%d\n",*myInt); }

int main () {

 int a=10;

 int * b = NULL;

 int * c = NULL;

 b=&a;

 print_number (b);

 print_number (c);

 Return 0; }

 17

Quality
 Unit tests

 With very large code-bases, it's difficult to
make changes without breaking features

 Unit tests make sure nothing changes
 Test very small bits of functionality in

isolation (math library, graphics unit)
 Build them and run them frequently
 Good test harness is essential (CppUnit,

CppUnitLite)

 18

Quality
 Acceptance test (or functional tests)

 High level tests that exercise lots of
functionality (AI, level loading, objectives)

 They usually run the whole game checking
for specific features (scripts conduct the
actual gameplay, PTFB)

 Having them automated means they can run
very frequently (with every build)

 19

Quality
 Bug database

 Keep a list of all bugs, a description, their
status, priority and sometimes programmer

 Team uses it to know what to fix next
 Gives an idea of how far the game is from

shipping
 Doesn't prevent bugs, just helps fix them

more efficiently

 20

Leveraging Existing Code

 A lot of code that games use is the same
 It's a total waste of time to write it over

and over
 Instead, spend your time in what's going

to make your game unique
 Avoid Not Invented Here (NIH)

syndrome!

 21

Leveraging Existing Code
 Reuse code from previous project

 Easier in a large company if you have an
engine and tools group

 Use freeware code and tools
 No support
 Make sure license allows it

 22

Leveraging Existing Code

 Middleware
 Companies provide with components used

in game development
 physics, animation, graphics, etc

 Commercial game engines
 You can license the whole engine and tools

and a single package
 Good if you're doing exactly that type of

game

 23

Platforms
 PCs

 Includes Windows, Linux, and Macs
 Can have very powerful hardware
 Easier to patch and allow for user content
 Need to support a wide range of hardware

and drivers
 Games need to play nice with other

programs and the operating system

 24

Platforms
 Game consoles

 Current generation
 Wii, Xbox 360, PS3

 Fixed set of hardware – never changes
 Usually use custom APIs
 More limited resources (but well defined)
 Currently much better sales than PC games

(although that changes over time)

 25

Platforms
 Handhelds and mobiles

 Limited hardware (although rapidly
improving)

 Programming often done in lower-level
languages (C, C++ or even assembly)

 Much smaller projects, teams, and
budgets

 Emerging market
 Separate lecture

 26

Platforms
 Browser and downloadable games

 Small games – mostly 2D
 Need to be downloaded quickly

(broadband speed question)
 Run on the PC itself (on any browser

usually)

 27

Platforms
 Multi-platform development

 The closer the platforms, the easier the
development

 Use abstraction layers to hide platform-
specific code

 Choice
 Target the minimum common denominator for

platforms (easy, cheap), vs. do the best you can
in each platform (more expensive and time
consuming)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

