
Chapter 3.1
Teams and Processes

Being a programmer.
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Programming Teams
 Up into the 1990's, even for very large games, 

the programmers developed the whole game (art 
and sounds too!)

 Shift from technical improvements to game-play
 Now for the most part, programmers write code 

to support designers and artists (who are the real 
content creators).

 Note: Mobile games are the exception.
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Programming Areas
 Game code

 Anything related directly to the game: camera, AI, 
displays, messaging system, 

 Game engine
 Any code that can be reused between different 

games (classes and libraries). Isolate game from the 
hardware allows focus on program logic

 Tools
 In house tools (level editors, visual sound effects)
 Plug-ins for off-the-shelf tools (Maya, 3ds max, 

Photoshop).
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Team Organization
 Programmers often have a background in 

Computer Science or sciences
 They usually specialize in some area (AI, 

graphics, networking) but must know about 
all other areas.

 Teams usually have a lead programmer.
 They sometimes have a project lead for 

each of the major areas. (AI, graphics)
 “Technical”, “game-play” programmers are 

tool specialists.
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Skills and Personalities

 Successful teams have a mix of personalities 
and skills:
 Experience vs. new ideas
 Methodical vs. visionaryqwe

 The ability for members of a team to work 
together is extremely important.

 Not unheard of (in business as well as games) 
to have “personality mapping” done. 
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Methodologies
 A methodology describes the procedures 

followed during development to create a 
game.

 Every company has a methodology (way of 
doing things), even if they don't explicitly 
think about it.

 With billions of dollars at stake, large 
companies have formally defined 
methodologies.
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Methodologies: Code and Fix
 Unfortunately very common
 Little or no planning, reacting to events
 Poor quality, unreliability of finished product, 

cancellations (Duke Nukem)
 “Crunch time” and “death spiral” normal
 “Flying by the seat of pants” OK, for small 

projects but dangerous with years long $$.
 “Stupid Lazy”
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Methodologies: Waterfall
 Very well-defined steps in development
 Lots of planning ahead of time
 Great for creating a detailed milestone schedule
 Good for “movie games” and other end to end 

defined projects.
 Doesn't react well to changes
 'Exploratory' game development is too 

unpredictable for this approach
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Methodologies: Iterative
 Multiple development cycles during a 

single project
 Each delivering a new set of functionality

 The game could ship at any moment
 Allows for planning but also for changes
 Allow for effective team allocation, team 

planning.
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Methodologies: Agile Methods
 Deal with the unexpected
 Very short iterations and goals

 2-3 weeks
 Iterate based on feedback of what was learned 

so far, open too last minute changes.
 Very good visibility of state of game
 Difficult for publishers or even developers to 

adopt because it's relatively new
 In use by “crash teams” at large studios.
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Common Practices
 Version Control Systems (VCS)

 Also called Revision Control (RCS) or Source 
Code Management (SCM)

 Database with all the files and history.
 Only way to work properly with a team.
 Centralized location, “checkout”
 History for each file helps manage bugs.
 Branching and merging can be very useful.
 Used for source code as well as game assets.
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Common Practices
 Coding standards

 Set of coding rules for the whole team to 
follow

 Improves readability and maintainability of 
the code

 Easier to work with other people's code
 They vary a lot from place to place

 Get used to different styles
 Sometimes details go to 100's of pages.
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Common Practices
 Automated builds

 Dedicated build server builds the game routinely 
(nightly) from scratch

 Takes the source code and creates an executable
 Also takes assets (tools, etc.) and builds them into 

game-specific format
 Build must never break or there is a problem.
 Build may be part of a “testing”/”QA”/”debugging” 

process loop.
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Quality

 Code reviews
 Another programmer (or group of 

programmers) reads over some code to try to 
find problems

 Sometimes done before code is committed to 
version control

 Can be beneficial if done correctly
 Requires a specialists eye (continuity experts 

in film).
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Quality
 Asserts and crashes

 Use asserts any time the game could crash or 
something could go very wrong

 An assert is a controlled crash (writes to standard 
error)

 Much easier to debug and fix (and turn off )
 Happens right where the problem occurred
 Effective in catching “program errors” not “user 

errors”
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/* assert example */

#include <stdio.h>

#include <assert.h>

void print_number(int* myInt) {

  assert (myInt!=NULL);

  printf ("%d\n",*myInt); }

int main () {

  int a=10;

  int * b = NULL;

  int * c = NULL;

  b=&a;

  print_number (b);

  print_number (c);

  Return 0; }
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Quality
 Unit tests

 With very large code-bases, it's difficult to 
make changes without breaking features

 Unit tests make sure nothing changes
 Test very small bits of functionality in 

isolation (math library, graphics unit)
 Build them and run them frequently
 Good test harness is essential (CppUnit, 

CppUnitLite)
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Quality
 Acceptance test (or functional tests)

 High level tests that exercise lots of 
functionality (AI, level loading, objectives)

 They usually run the whole game checking 
for specific features (scripts conduct the 
actual gameplay, PTFB)

 Having them automated means they can run 
very frequently (with every build)
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Quality
 Bug database

 Keep a list of all bugs, a description, their 
status, priority and sometimes programmer

 Team uses it to know what to fix next
 Gives an idea of how far the game is from 

shipping
 Doesn't prevent bugs, just helps fix them 

more efficiently
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Leveraging Existing Code

 A lot of code that games use is the same
 It's a total waste of time to write it over 

and over
 Instead, spend your time in what's going 

to make your game unique
 Avoid Not Invented Here (NIH) 

syndrome!
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Leveraging Existing Code
 Reuse code from previous project

 Easier in a large company if you have an 
engine and tools group

 Use freeware code and tools
 No support
 Make sure license allows it
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Leveraging Existing Code

 Middleware
 Companies provide with components used 

in game development
 physics, animation, graphics, etc

 Commercial game engines
 You can license the whole engine and tools 

and a single package
 Good if you're doing exactly that type of 

game
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Platforms
 PCs

 Includes Windows, Linux, and Macs
 Can have very powerful hardware
 Easier to patch and allow for user content
 Need to support a wide range of hardware 

and drivers
 Games need to play nice with other 

programs and the operating system
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Platforms
 Game consoles

 Current generation
 Wii, Xbox 360, PS3

 Fixed set of hardware – never changes
 Usually use custom APIs
 More limited resources (but well defined)
 Currently much better sales than PC games 

(although that changes over time)
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Platforms
 Handhelds and mobiles

 Limited hardware (although rapidly 
improving)

 Programming often done in lower-level 
languages (C, C++ or even assembly)

 Much smaller projects, teams, and 
budgets

 Emerging market
 Separate lecture
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Platforms
 Browser and downloadable games

 Small games – mostly 2D
 Need to be downloaded quickly 

(broadband speed question)
 Run on the PC itself (on any browser 

usually)
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Platforms
 Multi-platform development

 The closer the platforms, the easier the 
development

 Use abstraction layers to hide platform-
specific code

 Choice
 Target the minimum common denominator for 

platforms (easy, cheap), vs. do the best you can 
in each platform (more expensive and time 
consuming)
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