
Chapter 3.2
C++, Java, and Scripting

Languages

“The major programming
languages used in game

development.”

 2

C++
●C used to be the most popular
language for games

●Today, C++ is the language of choice
for game development

● C#, Objective C, ARM-C

 3

C++: Strengths
●Performance

● Control over low-level functionality (memory
management, etc)

● Can switch to assembly or C whenever
necessary

● Good interface with OS, hardware, and other
languages

 4

C++: Strengths
●High-level, object-oriented

● High-level language features are essential
for making today's complex games

● Has inheritance, polymorphism, templates,
and exceptions

● Strongly typed, so it has improved reliability

 5

C++: Strengths
●C Heritage

● C++ is the only high-level language that is
backwards-compatible with C

● Has APIs and compiler support in all
platforms

● Easier transition for experienced
programmers

 6

C++: Strengths
●Libraries

● STL (Standard Template Library)
● Comprehensive set of standard libraries

● Boost: widely used library with wide variety
of functionality

● Most commercial C++ libraries also
available (Open GL, DirectX)

 7

C++: Weaknesses
●Too low-level

● Still forces programmers to deal with low-
level issues (memory allocation)

● Too error-prone
● Attention to low-level details is overkill for

high-level features or tools
● If 90% of code is NOT performance

critical, is it worth writing it at such a low
level

 8

C++: Weaknesses
●Too complicated

● Because of its C heritage, C++ is very
complicated

● “Historical baggage” left behind in
languages like Java, C#, Objective C.

● Long learning curve to become competent
with the language

 9

C++: Weaknesses

●Lacking features
● No reflection or introspection features

● Object: What size are you?

● No method of object serialization
● Reading from media state of an object.

● No native support for message passing
● Not the same as “function calls”.
● Custom buffer solution.

 10

C++: Weaknesses
●Slow iteration

● C++ is fully compiled into binary format
from source code

● Compiling large numbers of files can be
very very slow

● This will only become more of a problem as
games become more complex

● Workarounds exist (precompiled
headers, dynamic linking, etc.)

 11

C++: When to Use It?

• When performance is crucial (core
features may include assembly, register)

• If your current code base is mostly C and
C++

• If you have a lot of in-house expertise in
C++

• Avoid using it for high-level code, such as
tools

 12

Java for Game Development
●Why use Java?

● It's a high-level OO language that
simplifies many C++ features

● Adds several useful high-level features
● Easy to develop for multiple platforms

because of intermediate bytecode
● Good library support
● Lower learning curve

 13

Java for Game Development
●Performance

● Has typically been Java's weak point
● Has improved in the last few years
● Still not up to C++ level, but getting close

● Uses Just-In-Time compiling and HotSpot
optimizations

● Also has access to native functionality
● Now has high-performance libraries
● JIN (Java Native Interface)

 14

Java for Game Development

●Platforms
● Well suited to downloadable and browser-

based games
● Strong player in mobile and handheld

platforms
● Possible to use in full PC games

● More likely to be embedded into a game
● Not currently used in consoles

 15

Java in Game Development
●Commercial games using Java

● Downloadable games like those from
PopCap Games: Bejeweled, etc.

● Online card/table/casino games
● PC games using Java as a scripting

language: Star Wars Galaxies, DDO
● PC games fully written in Java: You Don't

Know Jack, Who Wants to Be a
Millionaire

 16

Scripting Languages
●Why use scripting languages?

● Ease and speed of development
● Typing, memory management
● May be simple enough for designers

● Short iteration time
● No need to compile

● Code becomes a separate game asset (AI)
● Offer additional features and are customizable

● Reflection, serialization

 17

Scripting Languages

●Drawbacks
● Slow performance
● Limited tool support (debugger)
● Dynamic typing makes it difficult to catch

errors
● Can be awkward to interface with the game
● Difficult to implement well

 18

Scripting Languages
●Popular scripting languages

● Python
● Lua
● Other off-the-shelf options such as Ruby,

Perl, Javascript
● Custom scripting languages

● UnrealScript, QuakeC, NWNScript

 19

Scripting Languages
●How to choose a scripting language

● Consider whether you need one at all
● What features do you need?
● What kind of performance do you need?
● What debugging facilities does the language

have?
● On what platforms does it need to run?
● What resources and expertise are available?

	Chapter 3.2 C++, Java, and Scripting Languages
	C++
	C++: Strengths
	Slide 4
	Slide 5
	Slide 6
	C++: Weaknesses
	Slide 8
	Slide 9
	Slide 10
	C++: When to Use It?
	Java for Game Development
	Slide 13
	Slide 14
	Java in Game Development
	Scripting Languages
	Slide 17
	Slide 18
	Slide 19

