
Chapter 3.3
Programming Fundamentals

•Languages
•Paradigms
•Basic Data Types
•Data Structures
•OO in Game Design
•Component Systems
•Design Patterns

Languages

• Language: A system composed of signs
(symbols, indices, icons) and axioms (rules)
used for encoding and decoding information.

• Syntax: Refers to rules of a language, in
particular the structure and punctuation.

• Semantics: Refers to the meaning given to
symbols (and combinations of symbols).

2

Programming Languages

• A language for creating programs (giving
instructions to a computer).

• Computers are dumb... no, really, they are.

• A computer (at the lowest level) is simply a
powerful adding machine.

• A computer stores and manipulates numbers
(which can represent other things) in binary.

• I don't know about you, buy I don't speak
binary.

3

Programming Paradigms

• Paradigm – approach, method, thought pattern
used to seek a solution to a problem.

• There are dozens of (often overlapping)
programming paradigms including:

– Logical (declarative, recursive, Prolog)

– Functional (declarative, immutable, stateless,
Haskell)

– Imperative (linear, state-full, VAST MAJORITY OF
POPULAR PROGAMNING LANGUAGES)

4

Imperative Programming

• Imperative programs define sequences of
commands for the computer to perform.

• Structured Programming (subcategory of
Imperative) requires 3 things:

– Sequence

– Selection

– Repetition

5

Procedural Programming

• Another subcategory of Imperative.

• Uses procedures (subroutines, methods, or
functions) to contain computational steps to
be carried out.

• Any given procedure might be called at any
point during a program's execution, including
by other procedures or itself.

6

Object Oriented

• Subcategory of structured programming.

• Uses "objects" – customized data structures
consisting of data fields and methods – to
design applications and computer programs.

• As with procedures (in procedural
programming) any given objects methods or
variables might be referred to at any point
during a program's execution, including by
other objects or itself.

7

Popular Languages

• Understanding programming paradigms can
help you approach learning new programming
languages (if they are within a paradigm you
are familiar with).

• Most popular languages: C++, C, Java, PHP,
Perl, C#, Python, JavaScript, Visual Basic, Shell,
Delphi, Ruby, ColdFusion, D, Actionscript,
Pascal, Lua, Lisp, Assembly, Objective C, etc.

8

Data Types

• Primitive data types: integers, booleans,
characters, floating-point numbers (decimals),
alphanumeric strings.

• Pointers: (void* q = &x;)

• Variables: a symbolic name associated with a
value (value may be changed).

– Strong vs. Weak typing

– Implicit vs. Explicit type conversion

9

Data Structures

• Arrays

– Elements are adjacent in memory (great cache
consistency)

– They never grow or get reallocated

– In C++ there's no check for going out of bounds

– Inserting and deleting elements in the middle is
expensive

– Consider using the STL Vector in C++

10

Data Structures

• Linked lists

– Very fast and cheap to add/remove elements.

– Available in the STL (std::list)

– Every element is allocated separately

• Lots of little allocations

– Not placed contiguously in memory

11

Data Structures

• Dictionaries (hash maps)

– Maps a set of keys to some data.

– std::map, std::multimap, std::hash

– Very fast access to data

• Underlying structure varies, but is ordered in some way.

– Perfect for mapping IDs to pointers, or resource
handles to objects

12

Data Structures

• Stacks (LIFO)

– Last in, first out

– std::stack adaptor in STL

– parsing

• Queues (FIFO)

– First in, first out

– std::deque

– Priority queues for timing issues.

13

Data Structures

• Bit packing

– Fold all necessary data into small number of bits

– Very useful for storing boolean flags

• (pack 32 in a double word)

– Possible to apply to numerical values if we can give
up range or accuracy

– Very low level trick

• Only use when absolutely necessary

• Used OFTEN in networking/messaging scenarios

14

Bit Shifting

15

int age, gender, height, packed_info;

. . . // Assign values

// Pack as AAAAAAAA G HHHHHHH using shifts and "or"

packed_info = (age << 8) | (gender << 7) | height;

// Unpack with shifts and masking using "and"

height = packed_info & 0x7F; // This is binary 0000000001111111

gender = (packed_info >> 7) & 1;

age = (packed_info >> 8);

Union Bitpacking (C++)

union Packed_Info {
int age : 8;
int gender: 1;
int height: 7;

}

Packed_Info playercharacter;

playercharacter.age = 255;

16

Object Oriented Design

• Concepts

– Class

• Abstract specification of a data type; a pattern or
template of an object we would like to create.

– Instance

• A region of memory with associated semantics to store
all the data members of a class; something created using
our pattern.

– Object

• Another name for an instance of a class

17

Classes
#include <iostream>

using namespace std;

Class Enemy {

int height, weight;

public: void set_values (int,int);

} ;

void Enemy::set_values (int a, int b) { height = a; weight = b; }

int main () {

Enemy enemy1;

enemy1.set_values (36,350);

return 0;

} 18

Object Oriented Design

• Inheritance

– Models “is-a” relationship

– Extends behaviour of existing classes by making
minor changes in a newly created class.

• Example:
... // adding a AI function

public:

void RunAI();

19

Inheritance

class derived_class: public base_class

{ /*...*/ };

The public access specifier may be replaced
protected or private. This access specifier
limits the most accessible level for the
members inherited from the base class

20

class Boss: public Enemy {

private: int damage_resitance;

public: void RunAI();

} ;

class SuperBoss: public Boss {

public: void RunAI();

} ;

21

Object Oriented Design

• Inheritance

– UML diagram representing inheritance

22

Enemy Boss SuperBoss

Object Oriented Design

• Polymorphism

– The ability to refer to an object through a reference
(or pointer) of the type of a parent class

– Key concept of object oriented design

– Allow (among other things) for me to keep an array
of pointers to all objects in a particular derivation
tree.

23

Enemy* enemies[256];

enemies[0] = new Enemy;

enemies[1] = new Enemy;

enemies[2] = new Enemy;

enemies[3] = new Boss;

enemies[4] = new SuperBoss;

24

Object Oriented Design

• Multiple Inheritance

– Allows a class to have more than one base class

– Derived class adopts characteristics of all parent
classes

– Huge potential for problems (clashes, casting, etc)

– Multiple inheritance of abstract interfaces is much
less error prone

– Use pure virtual functions to create abstract
interfaces.

25

class Planet {

private:

double gravitationalmass;

public:

void WarpTimeSpace() = 0;

// Note pure virtual function

} ;

class SuperBoss: public Enemy, public Planet

{ };

26

Component Systems

• Limitations of inheritance

– Tight coupling

– Unclear flow of control

– Not flexible enough

– Static hierarchy

27

Component Systems

• Component system organization

– Use aggregation (composition) instead of
inheritance

– A game entity can “own” multiple components that
determine its behavior

– Each component can execute whenever the entity
is updated

– Messages can be passed between components and
to other entities

28

Component Systems

• Component system organization

29

GameEntity

Name = sword

RenderComp CollisionComp DamageComp PickupComp WieldComp

Component Systems

• Data-Driven Composition

– The structure of the game entities can be specified
in data

– Components are created and loaded at runtime

– Very easy to change (which is very important in
game development)

– Easy to implement with XML (go hierarchical
databases) which has excellent parser utilities.

30

Component Systems

• Analysis

– Very hard to debug

– Performance can be a bottleneck

– Keeping code and data synchronized can be a
challenge

– Extremely flexible

• Great for experimentation and varied gameplay

– Not very useful if problem/game is very well known
ahead of time

31

Design Patterns
• General solutions that to specific

problems/situations that come up often in
software development.

• Deal with high level concepts like program
organization and architecture.

• Not usually provided as library solutions, but
are implemented as needed.

• They are the kinds of things that you would
expect a program lead, or project manager to
know how to use.

32

Design Patterns

• Singleton

– Implements a single instance of a class with global
point of creation and access

– Don't overuse it!!!

– http://www.yolinux.com/TUTORIALS/C++Singleton.html

33

Singleton

static Singleton & GetInstance();

// Regular member functions...

static Singleton uniqueInstance;

http://www.yolinux.com/TUTORIALS/C++Singleton.html

Design Patterns

• Object Factory

– Creates objects by name

– Pluggable factory allows for new object types to be
registered at runtime

– Extremely useful in game development for creating
new objects, loading games, or instantiating new
content after game ships

– Extensible factory allows new objects to be
registered at runtime (see book.)

34

Design Patterns

• Object factory

35

ObjectFactory

Product * CreateObject(ProductType type);

CreateProduct

Product

Design Patterns

• Observer

– Allows objects to be notified of specific events with
minimal coupling to the source of the event

– Two parts

• subject and observer

– Observers register with a subject to so that they
can be notified when certain events happen to the
subject.

36

Design Patterns

• Observer

37

Subject
Attach(Observer *);

Detach(Observer *);

Notify();

Observer

Update();

ConcreteObserver

Update();

ConcreteSubject

Design Patterns

• Composite

– Allow a group of objects to be treated as a single
object

– Very useful for GUI elements, hierarchical objects,
inventory systems, etc

38

Design Patterns

• Composite

39

Composite

Operation();

list<Component*> children

SpecificComponent

Operation();

Component

Operation();

Other Design Patterns

• Decorator

• Façade

• Visitor

• Adapter

• Flyweight

• Command

40

The End

41

