Chapter 3.3
Programming Fundamentals

*Languages
*Paradigms

*Basic Data Types
*Data Structures

*O0 in Game Design
*Component Systems
*Design Patterns

Languages

* Language: A system composed of signs
(symbols, indices, icons) and axioms (rules)
used for encoding and decoding information.

e Syntax: Refers to rules of a language, in
particular the structure and punctuation.

* Semantics: Refers to the meaning given to
symbols (and combinations of symbols).

Programming Languages

A language for creating programs (giving
instructions to a computer).

Computers are dumb... no, really, they are.

A computer (at the lowest level) is simply a
powerful adding machine.

A computer stores and manipulates numbers
(which can represent other things) in binary.

| don't know about you, buy | don't speak
binary.

Programming Paradigms

e Paradigm — approach, method, thought pattern
used to seek a solution to a problem.

* There are dozens of (often overlapping)
programming paradigms including:

— Logical (declarative, recursive, Prolog)

— Functional (declarative, immutable, stateless,
Haskell)

— Imperative (linear, state-full, VAST MAJORITY OF
POPULAR PROGAMNING LANGUAGES)

Imperative Programming

* I[mperative programs define sequences of
commands for the computer to perform.

e Structured Programming (subcategory of
Imperative) requires 3 things:
— Sequence
— Selection
— Repetition

Procedural Programming

* Another subcategory of Imperative.

e Uses procedures (subroutines, methods, or

functions) to contain computational steps to
be carried out.

* Any given procedure might be called at any
point during a program's execution, including
by other procedures or itself.

Object Oriented

e Subcategory of structured programming.

e Uses "objects" — customized data structures
consisting of data fields and methods — to
design applications and computer programs.

* As with procedures (in procedural
programming) any given objects methods or
variables might be referred to at any point
during a program's execution, including by
other objects or itself.

Popular Languages

* Understanding programming paradigms can
nelp you approach learning new programming
anguages (if they are within a paradigm you
are familiar with).

* Most popular languages: C++, C, Java, PHP,
Perl|, C#, Python, JavaScript, Visual Basic, Shell,
Delphi, Ruby, ColdFusion, D, Actionscript,
Pascal, Lua, Lisp, Assembly, Objective C, etc.

Data Types

* Primitive data types: integers, booleans,
characters, floating-point numbers (decimals),

alphanumeric strings.

e Pointers: (void* q = &x;)

e Variables: a symbolic name associated with a
value (value may be changed).

— Strong vs. Weak typing
— Implicit vs. Explicit type conversion

Data Structures

* Arrays

— Elements are adjacent in memory (great cache
consistency)

— They never grow or get reallocated
— In C++ there's no check for going out of bounds

— Inserting and deleting elements in the middle is
expensive

— Consider using the STL Vector in C++

Data Structures

* Linked lists
— Very fast and cheap to add/remove elements.
— Available in the STL (std::list)

— Every element is allocated separately
* Lots of little allocations

— Not placed contiguously in memory

Data Structures

* Dictionaries (hash maps)
— Maps a set of keys to some data.
— std::map, std::multimap, std::hash
— Very fast access to data

* Underlying structure varies, but is ordered in some way.

— Perfect for mapping IDs to pointers, or resource
handles to objects

Data Structures

e Stacks (LIFO)
— Last in, first out
— std::stack adaptor in STL
— parsing
* Queues (FIFO)
— First in, first out
— std::deque
— Priority queues for timing issues.

Data Structures

* Bit packing
— Fold all necessary data into small number of bits

— Very useful for storing boolean flags
* (pack 32 in a double word)

— Possible to apply to numerical values if we can give
up range or accuracy
— Very low level trick

* Only use when absolutely necessary
e Used OFTEN in networking/messaging scenarios

Bit Shifting

The bitwise operators

Operator| Name Description

a&b and 1if both bitsare 1. 3 & 5is 1.

alb or 1ifeitherbitis 1. 3| 5is 7.

a~h xar 1 if both bits are different. 3 ~ 5 is 6.

oz not This unary operator inverts the bits. If ints are stored as 32-bit integers, ~3 is

11311111311111131311113111131111100.

ne< left shifts the bits of n left p positions. Zero bits are shifted into the low-order positions. 3
P Ishift [<<2is 12.

—_— right shifts the bits of n right p positions. If nis a 2's complement signed number, the sign bit
P shift is shifted into the high-order positions. 5 >> 2 is 1.

int age, gender, height, packed _info;
/[Assign values

I/l Pack as AAAAAAAA G HHHHHHH using shifts and "or"
packed info = (age << 8) | (gender << 7) | height;

I/l Unpack with shifts and masking using "and"
height = packed_info & Ox7F; // This is binary 0000000001111111
gender = (packed_info >>7) & 1;

age

= (packed_info >> 8);

Union Bitpacking (C++)

union Packed Info {
Int age : §;
int gender: 1;
int height: 7;

}

Packed_Info playercharacter;

playercharacter.age = 255;

Object Oriented Design

* Concepts

— Class

» Abstract specification of a data type; a pattern or
template of an object we would like to create.

— Instance

* Aregion of memory with associated semantics to store
all the data members of a class; something created using
our pattern.

— Object

* Another name for an instance of a class

Classes

#include <iostream>
using namespace std;

Class Enemy {
int height, weight;
public: void set_values (int,int);

Y
void Enemy::set_values (int a, int b) { height = a; weight = b; }

int main () {
Enemy enemyl;
enemyl.set values (36,350);
return O;

Object Oriented Design

* |Inheritance
— Models “is-a” relationship
— Extends behaviour of existing classes by making
minor changes in a newly created class.

* Example:

... // adding a Al function
public:
void RunAl();

Inheritance

class derived class: public base_class

{/*.*/%

The public access specifier may be replaced
protected or private. This access specifier
limits the most accessible level for the
members inherited from the base class

class Boss: public Enemy {

private: int damage_resitance;
public: void RunAl();

'

class SuperBoss: public Boss {
public: void RunAl();

'

Object Oriented Design

* Inheritance

— UML diagram representing inheritance

Enemy

Boss

SuperBoss

Object Oriented Design

* Polymorphism
— The ability to refer to an object through a reference
(or pointer) of the type of a parent class
— Key concept of object oriented design

— Allow (among other things) for me to keep an array
of pointers to all objects in a particular derivation
tree.

Enemy* enemies[256];

enemies[0] = new Enemy;
enemies[1] = new Enemy;
enemies[2] = new Enemy;
enemies[3] = new Boss;
enemies[4] = new SuperBoss;

Object Oriented Design

 Multiple Inheritance
— Allows a class to have more than one base class

— Derived class adopts characteristics of all parent
classes

— Huge potential for problems (clashes, casting, etc)

— Multiple inheritance of abstract interfaces is much
less error prone

— Use pure virtual functions to create abstract
interfaces.

class Planet {
private:
double gravitationalmass;
public:
void WarpTimeSpace() = 0;
// Note pure virtual function

'

class SuperBoss: public Enemy, public Planet

{ §

Component Systems

* Limitations of inheritance
— Tight coupling
— Unclear flow of control
— Not flexible enough
— Static hierarchy

Component Systems

* Component system organization

— Use aggregation (composition) instead of
inheritance

— A game entity can “own” multiple components that
determine its behavior

— Each component can execute whenever the entity
is updated

— Messages can be passed between components and
to other entities

Component Systems

* Component system organization

GameEntity

Name = sword

RenderComp CollisionComp DamageComp PickupComp WieldComp

Component Systems

* Data-Driven Composition

— The structure of the game entities can be specified
in data

— Components are created and loaded at runtime

— Very easy to change (which is very important in
game development)

— Easy to implement with XML (go hierarchical
databases) which has excellent parser utilities.

Component Systems

* Analysis
— Very hard to debug
— Performance can be a bottleneck

— Keeping code and data synchronized can be a
challenge

— Extremely flexible
* Great for experimentation and varied gameplay

— Not very useful if problem/game is very well known
ahead of time

Design Patterns

General solutions that to specific
problems/situations that come up often in
software development.

Deal with high level concepts like program
organization and architecture.

Not usually provided as library solutions, but
are implemented as needed.

They are the kinds of things that you would
expect a program lead, or project manager to
know how to use.

Design Patterns

* Singleton

— Implements a single instance of a class with global
point of creation and access

— Don't overuse it!!!
— http://www.yolinux.com/TUTORIALS/C++Singleton.html

Singleton

static Singleton & Getlnstance();
// Regular member functions...

static Singleton uniquelnstance;

http://www.yolinux.com/TUTORIALS/C++Singleton.html

Design Patterns

e Object Factory
— Creates objects by name

— Pluggable factory allows for new object types to be
registered at runtime

— Extremely useful in game development for creating
new objects, loading games, or instantiating new
content after game ships

— Extensible factory allows new objects to be
registered at runtime (see book.)

Design Patterns

* Object factory

Product

ObjectFactory

Product * CreateObject(ProductType type);

i

CreateProduct

Design Patterns

e Observer

— Allows objects to be notified of specific events with
minimal coupling to the source of the event
— Two parts
* subject and observer
— Observers register with a subject to so that they

can be notified when certain events happen to the
subject.

Design Patterns

e Observer

Subject

Attach(Observer *); Observer

Detach(Observer *); Update():

Notify(); ’
ConcreteSubject ConcreteObserver

Update();

Design Patterns

* Composite

— Allow a group of objects to be treated as a single
object

— Very useful for GUI elements, hierarchical objects,
Inventory systems, etc

Design Patterns

* Composite

Component
Operation();

SpecificComponent Composite

Operation(); Operation();

list<Component*> children

Other Design Patterns

Decorator
Facade
Visitor
Adapter
Flyweight
Command

The End

