
Chapter 3.4
Game Architecture

Overall Architecture

 The code for modern games is highly complex

 With code bases exceeding a million lines of
code, a well-defined architecture is essential
for:

 Adhering to deadlines

 Managing personal

2

Overall Architecture

 Main structure

 Game-specific code

 Game-engine code

 Both types of code are often split into modules,
which can be static libraries, dynamic link libraries
(DLLs), or just subdirectories

3

Overall Architecture

 Coupling of code is concern

 Architecture types

 Ad-hoc (everything accesses everything)

 Modular

 DAG (directed acyclic graph)

 Layered

4

Overall Architecture

 Options for integrating tools into the
architecture

 Separate code bases (if there's no need to share
functionality)

 XML data sheets (SVG, X3D)

 Partial use of game-engine functionality

 Level Editors

 Full integration

 Play, pause, edit, resume

5

Overview: Initialization/Shutdown

 The initialization step prepares everything that
is necessary to start a part of the game

 The shutdown step undoes everything the
initialization step did, but in reverse order

6

FrontEnd Initialization/Shutdown

{

FrontEnd frontEnd; // Facade

frontEnd.Initialize();

frontEnd.loop();

frontEnd.shutdown();

}

7

Memory Leaks (I)

char *a = malloc(128*sizeof(char));

char *b = malloc(128*sizeof(char));

// ---------------------------------------

b = a; // oops!

// ---

free(a);

free(b); // won't work

8

RIAA
 Resource Acquisition Is Initialization

 A useful rule to minimalize mismatch errors
in the initialization and shutdown steps

 Means that creating an object acquires and
initializes all the necessary resources, and
destroying it destroys and shuts down all
those resources

 RIAA is helpful for managing memory but can
still result in leaks.

9

FrontEnd Initialization/Shutdown

try {
FrontEnd frontEnd; // Facade

frontEnd.loop();

}

catch (…) {

// handle problems here

}

// Destructor ~FrontEnd called before main() ends

10

Memory Leaks (II)

BaseClass* obj_ptr = new DerivedClass;

// Allowed due to polymorphism.

...

delete obj_ptr;

// calls ~Parent() destructor NOT ~Child()

11

Optimizations

 Fast shutdown (level change)

 Creating and destroying objects is costly

 Using “memory pool” is faster

 Warm reboot

 Some resources can't be recovered until
main() ends.

 Restarting machine reinitializes stack

 Hand-Held gaming devices.

12

Overview:
Main Game Loop

 Games are driven by a game loop that
performs a series of tasks every frame

 Game may consist of single main loop

 Some games have separate loops for the front
and and the game itself

 Multi-threading may also entail multiple
loops

13

Frames

 Don't think of a frame as a picture

 A “frame” is a logical unit

 Game frame (time step)

 Graphics or rendering frame (screen)

 30 fps (30hz) flicker test

 Also frame rate of Halo 3

 Some LCD max of 60fps

14

Overview:
Main Game Loop

 Tasks

 Handling time (time stamp, time elapsed)

 Gathering player input

 Networking

 Simulation

 Collision detection and response

 Object updates

 Rendering

 Other miscellaneous tasks

15

Overview:
Main Game Loop

 Structure

 Hard-coded loops

 Multiple game loops

 For each major game state

 Front-End, Main, etc.

 For major threads

 Consider steps as tasks to be iterated through

16

17

while (!IsDone()) {
UpdateTime();
GetInput();
GetNetworkMessages();
SimulateWorld();
CollisionStep();
UpdateObjects();
RenderWorld(); // the 'graphics' part
MiscTasks();

}

Overview:
Main Game Loop

 Execution order

 Most of the time it doesn't matter

 In some situations, execution order is important

 Can help keep player interaction seamless

 Can maximize parallelism

 Exact ordering depends on hardware

18

19

while (!IsDone()) {
Tasks::iterator it = m_tasks.begin();
for (; it != m_tasks.end(); it ++)
{

Task* task = *it;
it -> update();

}
}

Decoupling Rendering

 Can decouple the rendering step from
simulation and update steps

 30fps game loop

 100fps graphics capability

 Results in higher frame rate, smoother
animation, and greater responsiveness

 Implementation is tricky and can be error-
prone

20

21

while (!IsDone()) {

UpdateTime();

if(TimetoRunSimulation())
RunSimulation();

if(SimulationNotRun())
InterpolateState();

RenderWorld();

}

Multi-threading

 Allowing multiple operations to happen in
parallel. (requires sharing of data code)

 Consider that a GPU is a separate processor.

 Potential 'threads'/'concurrent processes'
 Physics

 Collision calculations

 Animation processing

 Agent updates

 AI pathfinding

22

Game Entities

 What are game entities?

 Basically anything in a game world that can be
interacted with

 More precisely, a self-contained piece of logical
interactive content

 Enemy, bullet, fire, menu button

 Only things we will interact with should become
game entities

23

Game Entities - Organization

 Basic Choices
 Simple list

 Multiple databases

 Logical tree

 Spatial database

 Multiple options are often necessary
 Single Master List

 Other data structures use pointers to objects in
master list

 Observer model maintains consistency

24

Game Entities - Updating

 Updating each entity once per frame can be
too expensive

 Can use a tree structure to impose a hierarchy
for updating

 Can use a priority queue to decide which
entities to update every frame

 Different operations can use different data
structures.

25

Game Entities - Creation

 Basic object factories

 Enum list, switch statement

 Returns point to object

 Extensible object factories

 Allows registration of new types of objects

 Using automatic registration

 Using explicit registration

26

Game Entities –
Level Instantiation

 Loading a level involves loading both assets
and the game state

 It is necessary to create the game entities and
set the correct state for them

 Level/State often stored in file

 Using instance data vs. template data
 Not all object data will be different

 “Flyweight” concept: one copy of duplicate
data

27

Game Entities - Identification

 Strings

 Pointers

 Unique IDs or handles (UID)

 Maps a short unique name to a pointer

 Hashmap, Key → bucket

 Hashmap usually managed by an object

28

Game Entities - Communication
 Simplest method is function calls

 How to know what functions supported?

 Many games use a full messaging system

 Usually a dedicated object (singleton)

 Need to be careful about passing and allocating messages

 Messages need to be small, patterned

 Classes (and union) are useful for establishing
message types

 1000's of messages per frame, new(), delete()
overhead

 Memory pools key; overriding new/delete to refer
to fixed set of locations: “post office boxes”

29

Exercises

 Highly recommend you look at questions 2,3
and 4 in 2nd edition book.

 2. C++ memory leak utilities

 3. Simple game loop, separate rendering
loop (print messages for each part).

 4. Task loop that allows tasks to register.

30

The End

31

