Chapter 3.4
Game Architecture

Overall Architecture

The code for modern games is highly complex

With code bases exceeding a million lines of

code, a well-defined architecture is essential
for:

Adhering to deadlines

Managing personal

Overall Architecture

Main structure
Game-specific code
Game-engine code

Both types of code are often split into modules,
which can be static libraries, dynamic link libraries
(DLLs), or just subdirectories

Overall Architecture

Coupling of code is concern
Architecture types

Ad-hoc (everything accesses everything)
Modular

DAG (directed acyclic graph)

Layered

Overall Architecture

Options for integrating tools into the
architecture

Separate code bases (if there's no need to share
functionality)

XML data sheets (SVG, X3D)
Partial use of game-engine functionality

Level Editors

Full integration

Play, pause, edit, resume

Overview: Initialization/Shutdown

The initialization step prepares everything that
IS necessary to start a part of the game

The shutdown step undoes everything the
initialization step did, but in reverse order

FrontEnd Initialization/Shutdown

FrontEnd frontEnd; // Facade
frontEnd.Initialize();
frontEnd.loop();
frontEnd.shutdown();

Memory Leaks (I)

char *a = malloc(128*sizeof(char));
char *b = malloc(128*sizeof(char));

free(a);
free(b); // won't work

RIAA

Resource Acquisition Is Initialization

A useful rule to minimalize mismatch errors
in the initialization and shutdown steps

Means that creating an object acquires and
initializes all the necessary resources, and
destroying it destroys and shuts down all
those resources

RIAA is helpful for managing memory but can
still result in leaks.

FrontEnd Initialization/Shutdown

try {
FrontEnd frontEnd; // Facade

frontEnd.loop();

}
catch (...) {

// handle problems here
}

// Destructor ~FrontEnd called before main() ends

Memory Leaks (1)

BaseClass™* obj ptr = new DerivedClass;
// Allowed due to polymorphism.

delete obj_ptr;
// calls ~Parent() destructor NOT ~Child()

Optimizations

Fast shutdown (level change)
Creating and destroying objects is costly
Using “memory pool” is faster

Warm reboot

Some resources can't be recovered until
main() ends.

Restarting machine reinitializes stack
Hand-Held gaming devices.

Overview:
Main Game Loop

Games are driven by a game loop that
performs a series of tasks every frame

Game may consist of single main loop

Some games have separate loops for the front
and and the game itself

Multi-threading may also entail multiple
loops

Frames

Don't think of a frame as a picture
A “frame” is a logical unit

Game frame (time step)
Graphics or rendering frame (screen)

30 fps (30hz) flicker test
Also frame rate of Halo 3

Some LCD max of 60fps

Overview:
Main Game Loop
Tasks

Handling time (time stamp, time elapsed)
Gathering player input

Networking

Simulation

Collision detection and response

Object updates

Rendering

Other miscellaneous tasks

Overview:
Main Game Loop

Structure
Hard-coded loops
Multiple game loops

For each major game state
Front-End, Main, etc.
For major threads

Consider steps as tasks to be iterated through

while (!lsDone()) {
UpdateTime();
Getlnput();
GetNetworkMessages();
SimulateWorld();
CollisionStep();
UpdateObjects();
RenderWorld(); // the 'graphics’' part
MiscTasks();

17

Overview:
Main Game Loop

Execution order
Most of the time it doesn't matter
In some situations, execution order is important
Can help keep player interaction seamless
Can maximize parallelism
Exact ordering depends on hardware

while (!'lsDone()) {
Tasks::iterator it = m_tasks.begin();
for (; it 1= m_tasks.end(); it ++)
{
Task* task = *it;
it -> update();

19

Decoupling Rendering

Can decouple the rendering step from
simulation and update steps

30fps game loop

100fps graphics capability
Results in higher frame rate, smoother
animation, and greater responsiveness

Implementation is tricky and can be error-
prone

while (!lsDone()) {
UpdateTime();

If(TimetoRunSimulation())
RunSimulation();

if(SimulationNotRun())
InterpolateState();

RenderWorld();

21

Multi-threading

Allowing multiple operations to happen in
parallel. (requires sharing of data code)

Consider that a GPU is a separate processor.

Potential 'threads'/'concurrent processes'
Physics
Collision calculations
Animation processing
Agent updates
Al pathfinding

Game Entities

What are game entities?

Basically anything in a game world that can be
interacted with

More precisely, a self-contained piece of logical
interactive content
Enemy, bullet, fire, menu button

Only things we will interact with should become
game entities

Game Entities - Organization

Basic Choices
Simple list
Multiple databases
Logical tree
Spatial database

Multiple options are often necessary
Single Master List

Other data structures use pointers to objects in
master list

Observer model maintains consistency

Game Entities - Updating

Updating each entity once per frame can be
too expensive

Can use a tree structure to impose a hierarchy
for updating

Can use a priority queue to decide which
entities to update every frame

Different operations can use different data
structures.

Game Entities - Creation

Basic object factories
Enum list, switch statement
Returns point to object

Extensible object factories
Allows registration of new types of objects

Using automatic registration
Using explicit registration

Game Entities —
Level Instantiation

Loading a level involves loading both assets
and the game state

It is necessary to create the game entities and
set the correct state for them

Level/State often stored in file

Using instance data vs. template data
Not all object data will be different

“Flyweight” concept: one copy of duplicate
data

Game Entities - Identification

Strings
Pointers
Unique IDs or handles (UID)

Maps a short unigue name to a pointer
Hashmap, Key - bucket

Hashmap usually managed by an object

Game Entities - Communication

Simplest method is function calls
How to know what functions supported?

Many games use a full messaging system
Usually a dedicated object (singleton)

Need to be careful about passing and allocating messages
Messages need to be small, patterned

Classes (and union) are useful for establishing
message types

1000's of messages per frame, new(), delete()
overhead

Memory pools key; overriding new/delete to refer
to fixed set of locations: “post office boxes”

Exercises

Highly recommend you look at questions 2,3
and 4 in 2" edition book.
2. C++ memory leak utilities

3. Simple game loop, separate rendering
loop (print messages for each part).

4. Task loop that allows tasks to register.

The End

