
Chapter 3.4
Game Architecture

Overall Architecture

 The code for modern games is highly complex

 With code bases exceeding a million lines of
code, a well-defined architecture is essential
for:

 Adhering to deadlines

 Managing personal

2

Overall Architecture

 Main structure

 Game-specific code

 Game-engine code

 Both types of code are often split into modules,
which can be static libraries, dynamic link libraries
(DLLs), or just subdirectories

3

Overall Architecture

 Coupling of code is concern

 Architecture types

 Ad-hoc (everything accesses everything)

 Modular

 DAG (directed acyclic graph)

 Layered

4

Overall Architecture

 Options for integrating tools into the
architecture

 Separate code bases (if there's no need to share
functionality)

 XML data sheets (SVG, X3D)

 Partial use of game-engine functionality

 Level Editors

 Full integration

 Play, pause, edit, resume

5

Overview: Initialization/Shutdown

 The initialization step prepares everything that
is necessary to start a part of the game

 The shutdown step undoes everything the
initialization step did, but in reverse order

6

FrontEnd Initialization/Shutdown

{

FrontEnd frontEnd; // Facade

frontEnd.Initialize();

frontEnd.loop();

frontEnd.shutdown();

}

7

Memory Leaks (I)

char *a = malloc(128*sizeof(char));

char *b = malloc(128*sizeof(char));

// ---------------------------------------

b = a; // oops!

// ---

free(a);

free(b); // won't work

8

RIAA
 Resource Acquisition Is Initialization

 A useful rule to minimalize mismatch errors
in the initialization and shutdown steps

 Means that creating an object acquires and
initializes all the necessary resources, and
destroying it destroys and shuts down all
those resources

 RIAA is helpful for managing memory but can
still result in leaks.

9

FrontEnd Initialization/Shutdown

try {
FrontEnd frontEnd; // Facade

frontEnd.loop();

}

catch (…) {

// handle problems here

}

// Destructor ~FrontEnd called before main() ends

10

Memory Leaks (II)

BaseClass* obj_ptr = new DerivedClass;

// Allowed due to polymorphism.

...

delete obj_ptr;

// calls ~Parent() destructor NOT ~Child()

11

Optimizations

 Fast shutdown (level change)

 Creating and destroying objects is costly

 Using “memory pool” is faster

 Warm reboot

 Some resources can't be recovered until
main() ends.

 Restarting machine reinitializes stack

 Hand-Held gaming devices.

12

Overview:
Main Game Loop

 Games are driven by a game loop that
performs a series of tasks every frame

 Game may consist of single main loop

 Some games have separate loops for the front
and and the game itself

 Multi-threading may also entail multiple
loops

13

Frames

 Don't think of a frame as a picture

 A “frame” is a logical unit

 Game frame (time step)

 Graphics or rendering frame (screen)

 30 fps (30hz) flicker test

 Also frame rate of Halo 3

 Some LCD max of 60fps

14

Overview:
Main Game Loop

 Tasks

 Handling time (time stamp, time elapsed)

 Gathering player input

 Networking

 Simulation

 Collision detection and response

 Object updates

 Rendering

 Other miscellaneous tasks

15

Overview:
Main Game Loop

 Structure

 Hard-coded loops

 Multiple game loops

 For each major game state

 Front-End, Main, etc.

 For major threads

 Consider steps as tasks to be iterated through

16

17

while (!IsDone()) {
UpdateTime();
GetInput();
GetNetworkMessages();
SimulateWorld();
CollisionStep();
UpdateObjects();
RenderWorld(); // the 'graphics' part
MiscTasks();

}

Overview:
Main Game Loop

 Execution order

 Most of the time it doesn't matter

 In some situations, execution order is important

 Can help keep player interaction seamless

 Can maximize parallelism

 Exact ordering depends on hardware

18

19

while (!IsDone()) {
Tasks::iterator it = m_tasks.begin();
for (; it != m_tasks.end(); it ++)
{

Task* task = *it;
it -> update();

}
}

Decoupling Rendering

 Can decouple the rendering step from
simulation and update steps

 30fps game loop

 100fps graphics capability

 Results in higher frame rate, smoother
animation, and greater responsiveness

 Implementation is tricky and can be error-
prone

20

21

while (!IsDone()) {

UpdateTime();

if(TimetoRunSimulation())
RunSimulation();

if(SimulationNotRun())
InterpolateState();

RenderWorld();

}

Multi-threading

 Allowing multiple operations to happen in
parallel. (requires sharing of data code)

 Consider that a GPU is a separate processor.

 Potential 'threads'/'concurrent processes'
 Physics

 Collision calculations

 Animation processing

 Agent updates

 AI pathfinding

22

Game Entities

 What are game entities?

 Basically anything in a game world that can be
interacted with

 More precisely, a self-contained piece of logical
interactive content

 Enemy, bullet, fire, menu button

 Only things we will interact with should become
game entities

23

Game Entities - Organization

 Basic Choices
 Simple list

 Multiple databases

 Logical tree

 Spatial database

 Multiple options are often necessary
 Single Master List

 Other data structures use pointers to objects in
master list

 Observer model maintains consistency

24

Game Entities - Updating

 Updating each entity once per frame can be
too expensive

 Can use a tree structure to impose a hierarchy
for updating

 Can use a priority queue to decide which
entities to update every frame

 Different operations can use different data
structures.

25

Game Entities - Creation

 Basic object factories

 Enum list, switch statement

 Returns point to object

 Extensible object factories

 Allows registration of new types of objects

 Using automatic registration

 Using explicit registration

26

Game Entities –
Level Instantiation

 Loading a level involves loading both assets
and the game state

 It is necessary to create the game entities and
set the correct state for them

 Level/State often stored in file

 Using instance data vs. template data
 Not all object data will be different

 “Flyweight” concept: one copy of duplicate
data

27

Game Entities - Identification

 Strings

 Pointers

 Unique IDs or handles (UID)

 Maps a short unique name to a pointer

 Hashmap, Key → bucket

 Hashmap usually managed by an object

28

Game Entities - Communication
 Simplest method is function calls

 How to know what functions supported?

 Many games use a full messaging system

 Usually a dedicated object (singleton)

 Need to be careful about passing and allocating messages

 Messages need to be small, patterned

 Classes (and union) are useful for establishing
message types

 1000's of messages per frame, new(), delete()
overhead

 Memory pools key; overriding new/delete to refer
to fixed set of locations: “post office boxes”

29

Exercises

 Highly recommend you look at questions 2,3
and 4 in 2nd edition book.

 2. C++ memory leak utilities

 3. Simple game loop, separate rendering
loop (print messages for each part).

 4. Task loop that allows tasks to register.

30

The End

31

